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Extract Text Data from Files

1-2

This example shows how to extract the text data from text, HTML, Microsoft® Word, PDF,
CSV, and Microsoft Excel® files and import it into MATLAB® for analysis.

Usually, the easiest way to import text data into MATLAB is to use the extractFileText
function. This function extracts the text data from text, PDE, HTML, and Microsoft Word
files. To import text from CSV and Microsoft Excel files, use readtable. To extract text
from HTML code, use extractHTMLText. To read data from PDF forms, use
readPDFFormData.

Text File

Extract the text from sonnets. txt using extractFileText. The file sonnets. txt
contains Shakespeare's sonnets in plain text.

filename = "sonnets.txt";
str = extractFileText(filename);

View the first sonnet by extracting the text between the two titles "I" and "II".
start = " I" + newline;

fin = " II";
sonnetl = extractBetween(str,start, fin)

sonnetl
From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decease,
His tender heir might bear his memory:
But thou, contracted to thine own bright eyes,
Feed'st thy light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy foe, to thy sweet self too cruel:
Thou that art now the world's fresh ornament,
And only herald to the gaudy spring,
Within thine own bud buriest thy content,
And tender churl mak'st waste in niggarding:
Pity the world, or else this glutton be,
To eat the world's due, by the grave and thee.
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Microsoft Word Document

Extract the text from sonnets.docx using extractFileText. The file
exampleSonnets.docx contains Shakespeare's sonnets in a Microsoft Word document.

filename = "exampleSonnets.docx";
str = extractFileText(filename);

View the second sonnet by extracting the text between the two titles "II" and "III".
start = " II" + newline;
fin = " III";
sonnet2 = extractBetween(str,start,fin)
sonnet2 =
When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!

This were to be new made when thou art old,

And see thy blood warm when thou feel'st it cold.
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The example Microsoft Word document uses two newline characters between each line.
To replace these characters with a single newline character, use the replace function.

sonnet2 = replace(sonnet2, [newline newline],newline)

sonnet2 =
When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held:
Then being asked, where all thy beauty lies,
Where all the treasure of thy lusty days;
To say, within thine own deep sunken eyes,
Were an all-eating shame, and thriftless praise.
How much more praise deserv'd thy beauty's use,
If thou couldst answer 'This fair child of mine
Shall sum my count, and make my old excuse,'
Proving his beauty by succession thine!
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.

PDF Files
Extract text from PDF documents and data from PDF forms.

Extract the text from sonnets.pdf using extractFileText. The file
exampleSonnets.pdf contains Shakespeare's sonnets in a PDF.

filename = "exampleSonnets.pdf";
str = extractFileText(filename);

View the third sonnet by extracting the text between the two titles "III" and "IV". This
PDF has a space before each newline character.

start = " III " + newline;
fin = "IV";
sonnet3 = extractBetween(str,start,fin)

sonnet3
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Look in thy glass and tell the face thou viewest
Now is the time that face should form another;
Whose fresh repair if now thou not renewest,
Thou dost beguile the world, unbless some mother.
For where is she so fair whose unear'd womb
Disdains the tillage of thy husbandry?
Or who is he so fond will be the tomb,
0f his self-love to stop posterity?
Thou art thy mother's glass and she in thee
Calls back the lovely April of her prime;
So thou through windows of thine age shalt see,
Despite of wrinkles this thy golden time.

But if thou live, remember'd not to be,

Die single and thine image dies with thee.

To read text data from PDF forms, use readPDFFormData. The function returns a struct
containing the data from the PDF form fields.

filename = "weatherReportForml.pdf";
data = readPDFFormData(filename)

data = struct with fields:

event type: "Thunderstorm Wind"
event narrative: "Large tree down between Plantersville and Nettleton."

HTML
Extract text from HTML files, HTML code, and the web.

To extract text data from a saved HTML file, use extractFileText.

filename = "exampleSonnets.html";
str = extractFileText(filename);

View the forth sonnet by extracting the text between the two titles "IV" and "V".
start = newline + "IV" + newline;

fin = newline + "V" + newline;
sonnet4 = extractBetween(str,start,fin)
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sonnet4 =

Unthrifty loveliness, why dost thou spend

Upon thy self thy beauty's legacy?

Nature's bequest gives nothing, but doth lend,
And being frank she lends to those are free:
Then, beauteous niggard, why dost thou abuse
The bounteous largess given thee to give?
Profitless usurer, why dost thou use

So great a sum of sums, yet canst not live?
For having traffic with thy self alone,

Thou of thy self thy sweet self dost deceive:
Then how when nature calls thee to be gone,
What acceptable audit canst thou leave?

Thy unused beauty must be tombed with thee,
Which, used, lives th' executor to be.

To extract text data from a string containing HTML code, use extractHTMLText.

code = "<html><body><h1>THE SONNETS</hl><p>by William Shakespeare</p></body></html>";
str = extractHTMLText (code)

str =
"THE SONNETS

by William Shakespeare"

To extract text data from a web page, first read the HTML code using webread, and then
use extractHTMLText.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);
str = extractHTMLText (code)

str =
'Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing,

Text Analytics Toolbox includes tools for processing raw text from sources such a

Using machine learning techniques such as LSA, LDA, and word embeddings, you can
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To find particular elements of HTML code, parse the code using htmlTree and use
findElement. Parse the HTML code and find all the hyperlinks. The hyperlinks are
nodes with element name "A".

tree = htmlTree(code);

selector
subtrees

IIAII ;
findElement (tree,selector);

View the first 10 subtrees and extract the text using ext ractHTMLText.

subtrees(1:10)

ans =

10x1 htmlTree:

<A
<A
<A
<A
<A
<A
<A
<A
<A
<A

=~ o~ o~~~ o~~~ —~
QOO NOUT A WN
O T T T T R e
NPNPMNPNPNPPNP P

—_

class="svg link navbar-brand" href="https://www.mathworks.com?s ti..

class="mwa-nav_login" href=
//www .
2/ /www.
//wWww .
//www .
//wWww .
//wWww .
//wWww .
//wWww .

href="https:
href="https

href="https:
href="https:
href="https:
href="https:
href="https:
href="https:

str = extractHTMLText(subtrees);

"https://www.mathworks.com/login?uri=ht..
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.

com/products.html?s tid=gn ps">Product..
com/solutions.html?s tid=gn sol">Solut..
com/academia.html?s tid=gn acad">Acade..
com/support.html?s tid=gn_supp">Suppor..
com/matlabcentral/?s tid=gn mlc">Commu..
com/company/events.html?s tid=gn ev">E..
com/company/aboutus/contact us.html?s ..
com/store?s cid=store top nav&amp;s ti..

View the extracted text of the first 10 hyperlinks.

str(1:10)

ans = 10x1 string array

"Sign In"

"Products"
"Solutions"
"Academia"

“"Support"

"Community"

"Events"

"Contact Us"
"How to Buy"

1-7



1 TextData Preparation

To get the link targets, use getAttributes and specify the attribute "href" (hyperlink
reference). Get the link targets of the first 10 subtrees.

attr = "href";
str = getAttribute(subtrees(1:10),attr)

str = 10x1 string array
"https://www.mathworks.com?s tid=gn logo"
"https://www.mathworks.com/login?uri=http://www.mathworks.com/help/textanalytics/ii
"https://www.mathworks.com/products.html?s tid=gn_ps"
"https://www.mathworks.com/solutions.html?s tid=gn sol"
"https://www.mathworks.com/academia.html?s tid=gn_acad"
"https://www.mathworks.com/support.html?s tid=gn_supp"
"https://www.mathworks.com/matlabcentral/?s_tid=gn mlc"
"https://www.mathworks.com/company/events.html?s tid=gn ev"
"https://www.mathworks.com/company/aboutus/contact us.html?s tid=gn _cntus"
"https://www.mathworks.com/store?s cid=store_top nav&s tid=gn_store"

CSV and Microsoft Excel Files

To extract text data from CSV and Microsoft Excel files, use readtable and extract the
text data from the table that it returns.

Extract the text from the events narrative column of weatherReports.csv.

T = readtable('weatherReports.csv', 'TextType', 'string');
head(T)

ans=8x16 table
Time event id state event type d:

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"

15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

str = T.event narrative;
str(1:10)

1-8
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ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area.
"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."
"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."
"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Extract Text from Multiple Files

If your text data is contained in multiple files in a folder, then you can import the text data
into MATLAB using a file datastore.

Create a file datastore for the example sonnet text files. The examples files are named
"exampleSonnetN. txt", where N is the number of the sonnet. Specify the file name
using the wildcard "*" to find all file names of this structure. To specify the read function
to be extractFileText, input this function to fileDatastore using a function handle.

fds = fileDatastore('exampleSonnet*.txt', 'ReadFcn',@extractFileText)
fds =
FileDatastore with properties:
Files: {
" ...\Documents\MATLAB\examples\textanalytics-ex15735454
" ...\Documents\MATLAB\examples\textanalytics-ex15735454
" ...\Documents\MATLAB\examples\textanalytics-ex15735454
... and 1 more
}

UniformRead: 0
ReadFcn: @extractFileText
AlternateFileSystemRoots: {}

Loop over the files in the datastore and read each text file.
str = [];

while hasdata(fds)
textData = read(fds);
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end

str = [str; textDatal;

View the extracted text.

str

str = 4x1 string array
" From fairest creatures we desire increase,« That thereby beauty's rose might ne
" When forty winters shall besiege thy brow,« And dig deep trenches in thy beaut
" Look in thy glass and tell the face thou viewest« Now is the time that face shq
" Unthrifty loveliness, why dost thou spende« Upon thy self thy beauty's legacy?«

See Also

extractFileText | extractHTMLText | readPDFFormData | tokenizedDocument

Related Examples

“Prepare Text Data for Analysis” on page 1-11

“Create Simple Text Model for Classification” on page 2-2
“Visualize Text Data Using Word Clouds” on page 3-2
“Analyze Text Data Containing Emojis” on page 2-25
“Analyze Text Data Using Topic Models” on page 2-18
“Analyze Text Data Using Multiword Phrases” on page 2-9
“Classify Text Data Using Deep Learning” on page 2-43
“Train a Sentiment Classifier” on page 2-33



Prepare Text Data for Analysis

Prepare Text Data for Analysis

This example shows how to create a function which cleans and preprocesses text data for
analysis.

Text data can be large and can contain lots of noise which negatively affects statistical
analysis. For example, text data can contain the following:

Variations in case, for example "new" and "New"

Variations in word forms, for example "walk" and "walking"

Words which add noise, for example stop words such as "the" and "of"
Punctuation and special characters

HTML and XML tags

These word clouds illustrate word frequency analysis applied to some raw text data from
weather reports, and a preprocessed version of the same text data.

1-11
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Raw Data
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Load and Extract Text Data

Load the example data. The file weatherReports. csv contains weather reports,

Clean Data

Ciuche
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north quarter
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Tang Coun causa “m
‘mu..-,.‘-._ NUMEe LS yhlghWﬂy

storm gust Taading -
thunderstorm

= home

including a text description and categorical labels for each event.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType'

Extract the text data from the field event narrative, and the label data from the field

event type.

textData = data.event narrative;

labels = data.event type;
textData(1:10)

1-12
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ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."

"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."

"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Create Tokenized Documents

Convert the text data to lowercase.

cleanTextData = lower(textData);
cleanTextData(1:10)

ans = 10x1 string array
"large tree down between plantersville and nettleton."”
"one to two feet of deep standing water developed on a street on the winthrop unive
"nws columbia relayed a report of trees blown down along tom hall st."
"media reported two trees blown down along i-40 in the old fort area."

"a few tree limbs greater than 6 inches down on hwy 18 in roseland."

"awning blown off a building on lamar avenue. multiple trees down near the interse
"quarter size hail near rosemark."

“tin roof ripped off house on old memphis road near billings drive. several large -
"powerlines down at walnut grove and cherry lane roads."

Create an array of tokenized documents.

cleanDocuments = tokenizedDocument(cleanTextData);
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 8 tokens: large tree down between plantersville and nettleton

(2,1) 39 tokens: one to two feet of deep standing water developed on a stre..
(3,1) 14 tokens: nws columbia relayed a report of trees blown down along to..
(4,1) 14 tokens: media reported two trees blown down along i-40 in the old ..
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(5,1) 0 tokens:

(6,1) 15 tokens: a few tree limbs greater than 6 inches down on hwy 18 in r..
(7,1) 20 tokens: awning blown off a building on lamar avenue . multiple tre..
(8,1) 6 tokens: quarter size hail near rosemark .

(9,1) 21 tokens: tin roof ripped off house on old memphis road near billing..
(10,1) 10 tokens: powerlines down at walnut grove and cherry lane roads .

Erase the punctuation from the documents.

cleanDocuments = erasePunctuation(cleanDocuments);
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 7 tokens: large tree down between plantersville and nettleton

(2,1) 37 tokens: one to two feet of deep standing water developed on a stre..
(3,1) 13 tokens: nws columbia relayed a report of trees blown down along to..
(4,1) 13 tokens: media reported two trees blown down along 140 in the old f..
(5,1) 0 tokens:

(6,1) 14 tokens: a few tree limbs greater than 6 inches down on hwy 18 in r..
(7,1) 18 tokens: awning blown off a building on lamar avenue multiple trees..
(8,1) 5 tokens: quarter size hail near rosemark

(9,1) 19 tokens: tin roof ripped off house on old memphis road near billing..
(10,1) 9 tokens: powerlines down at walnut grove and cherry lane roads

Words like "a", "and", "to", and "the" (known as stop words) can add noise to data.
Remove a list of stop words using the removeStopWords function.

cleanDocuments = removeStopWords(cleanDocuments);
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

5 tokens: large tree down plantersville nettleton

18 tokens: two feet deep standing water developed street winthrop uni..
10 tokens: nws columbia relayed report trees blown down tom hall st

10 tokens: media reported two trees blown down i40 old fort area

0 tokens:
10 tokens: few tree limbs greater 6 inches down hwy 18 roseland
13 tokens: awning blown off building lamar avenue multiple trees down..
5 tokens: quarter size hail near rosemark

,-\,-\,-\,-\,-\,-\,-\,-\
ONOUT A WN
O
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(9,1) 16 tokens: tin roof ripped off house old memphis road near billings d..
(10,1) 7 tokens: powerlines down walnut grove cherry lane roads

Remove words with 2 or fewer characters, and words with 15 or greater characters.

cleanDocuments = removeShortWords(cleanDocuments,2);
cleanDocuments = removelLongWords(cleanDocuments,15);
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two feet deep standing water developed street winthrop uni..
(3,1) 9 tokens: nws columbia relayed report trees blown down tom hall

(4,1) 10 tokens: media reported two trees blown down i40 old fort area

(5,1) 0 tokens:

(6,1) 8 tokens: few tree limbs greater inches down hwy roseland

(7,1) 13 tokens: awning blown off building lamar avenue multiple trees down..
(8,1) 5 tokens: quarter size hail near rosemark

(9,1) 16 tokens: tin roof ripped off house old memphis road near billings d..
(10,1) 7 tokens: powerlines down walnut grove cherry lane roads

Lemmatize the words using normalizeWords. To improve lemmatization, first add part
of speech details to the documents using addPart0fSpeechDetails.

cleanDocuments = addPartOfSpeechDetails(cleanDocuments);
cleanDocuments = normalizeWords(cleanDocuments, 'Style', 'lemma');
cleanDocuments(1:10)

ans =
10x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two foot deep standing water develop street winthrop unive..
(3,1) 9 tokens: nws columbia relayed report tree blow down tom hall

(4,1) 10 tokens: medium report two tree blow down i40 old fort area

(5,1) 0 tokens:

(6,1) 8 tokens: few tree limb great inches down hwy roseland

(7,1) 13 tokens: awning blow off building lamar avenue multiple tree down n..
(8,1) 5 tokens: quarter size hail near rosemark

(9,1) 16 tokens: tin roof rip off house old memphis road near billings driv..
(10,1) 7 tokens: powerlines down walnut grove cherry lane road

1-15
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Create Bag-of-Words Model

Create a bag-of-words model.

cleanBag bag0fWords (cleanDocuments)

cleanBag =
bag0fWords with properties:

Counts: [36176%x18410 double]
Vocabulary: [1x18410 string]
NumWords: 18410
NumDocuments: 36176

Remove words that do not appear more than two times in the bag-of-words model.
cleanBag = removeInfrequentWords(cleanBag,?2)

cleanBag =
bagOfWords with properties:

Counts: [36176x6952 double]
Vocabulary: [1x6952 string]
NumWords: 6952
NumDocuments: 36176

Some preprocessing steps such as removeInfrequentWords leaves empty documents in
the bag-of-words model. To ensure that no empty documents remain in the bag-of-words
model after preprocessing, use removeEmptyDocuments as the last step.

Remove empty documents from the bag-of-words model and the corresponding labels
from labels.

[cleanBag,idx] = removeEmptyDocuments(cleanBag);
labels(idx) = [1];
cleanBag

cleanBag =
bagOfWords with properties:

Counts: [28137x6952 double]
Vocabulary: [1x6952 string]
NumWords: 6952
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NumDocuments: 28137

Create a Preprocessing Function

It can be useful to create a function which performs preprocessing so you can prepare
different collections of text data in the same way. For example, you can use a function so
that you can preprocess new data using the same steps as the training data.

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives, performs the following steps in
order:

Convert the text data to lowercase using lLower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

N 6o o1 A W N M

Lemmatize the words using normalizeWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

newText = "A tree is downed outside Apple Hill Drive, Natick";
newDocuments = preprocessWeatherNarratives (newText)

newDocuments =
tokenizedDocument:

7 tokens: tree down outside apple hill drive natick

Compare with Raw Data

Compare the preprocessed data with the raw data.

rawDocuments = tokenizedDocument(textData);
rawBag = bag0fWords(rawDocuments)

rawBag =
bagOfWords with properties:
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Counts: [36176x23302 double]
Vocabulary: [1x23302 string]
NumWords: 23302
NumDocuments: 36176

Calculate the reduction in data.

numWordsClean = cleanBag.NumWords;
numWordsRaw = rawBag.NumWords;
reduction = 1 - numWordsClean/numWordsRaw

reduction = 0.7017

Compare the raw data and the cleaned data by visualizing the two bag-of-words models
using word clouds.

figure
subplot(1,2,1)
wordcloud(rawBag) ;
title("Raw Data")
subplot(1,2,2)
wordcloud(cleanBag);
title("Clean Data")
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Example Preprocessing Function
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The function preprocessWeatherNarratives, performs the following steps in order:

N O o1 A W N M

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.

Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

Lemmatize the words using normalizeWords.
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function [documents] = preprocessWeatherNarratives(textData)
% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords (documents,?2);

documents = removelLongWords(documents,15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

addPart0fSpeechDetails | bag0fWords | erasePunctuation | normalizeWords |
removeEmptyDocuments | removeInfrequentWords | removeLongWords |
removeShortWords | removeStopWords | tokenizedDocument | wordcloud

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Create Simple Text Model for Classification” on page 2-2
. “Visualize Text Data Using Word Clouds” on page 3-2

. “Analyze Text Data Containing Emojis” on page 2-25

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9
. “Classify Text Data Using Deep Learning” on page 2-43

. “Train a Sentiment Classifier” on page 2-33
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Parse HTML and Extract Text Content

This example shows how to parse HTML code and extract the text content from particular
elements.

Parse HTML Code

Read HTML code from the URL https://www.mathworks.com/help/textanalytics
using webread.

url = "https://www.mathworks.com/help/textanalytics";
code = webread(url);

Parse the HTML code using htmlTree.
tree = htmlTree(code);

View the HTML element name of the tree.
tree.Name

ans =
"HTML"

View the child elements of the tree. The children are subtrees of tree.
tree.Children

ans =
4x1 htmlTree:

<HEAD><TITLE>Text Analytics Toolbox Documentation</TITLE><META charset="utf-8"/><M|

<BODY id="responsive offcanvas"><!-- Mobile TopNav: Start --><DIV class="header vi

Extract Text from HTML Tree

To extract text directly from the HTML tree, use extractHTMLText.
str = extractHTMLText(tree)

str =
"Text Analytics Toolbox™ provides algorithms and visualizations for preprocessing,
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Text Analytics Toolbox includes tools for processing raw text from sources such a

Using machine learning techniques such as LSA, LDA, and word embeddings, you can -

Find HTML Elements

To find particular elements of an HTML tree, use findElement. Find all the hyperlinks in
the HTML tree. In HTML, hyperlinks use the "A" tag.

selector
subtrees

“A";

View the first few subtrees.

subtrees(1:20)

ans =
20x1

<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A
<A

htmlTree:

findElement(tree,selector);

class="svg link navbar-brand" href="https://www.mathworks.com?s tid=gn logo"><II
class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathy

href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:
href="https:

/ /www

//www .
//www .
//www .
//www .
//www .
//www .

//www .
//www .
//www .

mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
mathworks.
.mathworks.
mathworks.
mathworks.
mathworks.

com/products.html?s tid=gn ps">Products</A>
com/solutions.html?s tid=gn sol">Solutions</A>
com/academia.html?s tid=gn acad">Academia</A>
com/support.html?s tid=gn supp">Support</A>
com/matlabcentral/?s tid=gn mlc">Community</A>
com/company/events.html?s tid=gn ev">Events</A>
com/company/aboutus/contact us.html?s tid=gn_cntus":
com/store?s cid=store top nav&amp;s tid=gn store">H
com/company/aboutus/contact us.html?s tid=gn_cntus":
com/store?s cid=store top nav&amp;s tid=gn store">H

class="mwa-nav_login" href="https://www.mathworks.com/login?uri=http://www.mathy
class="svg link pull-left" href="https://www.mathworks.com?s tid=gn logo"><IMG :

href="https
href="https
href="https
href="https
href="https
href="https

2/ /www.

2/ /www

2/ /www.
2/ /www.
2/ /www.
2/ /www.

mathworks.
.mathworks.
mathworks.
mathworks.
mathworks.
mathworks.

com/products.html?s tid=gn ps">Products</A>
com/solutions.html?s tid=gn sol">Solutions</A>
com/academia.html?s tid=gn acad">Academia</A>
com/support.html?s tid=gn supp">Support</A>
com/matlabcentral/?s tid=gn mlc">Community</A>
com/company/events.html?s tid=gn ev">Events</A>

Create a word cloud from the text of the hyperlinks.



Parse HTML and Extract Text Content

str = extractHTMLText(subtrees);
figure

wordcloud(str);
title("Hyperlinks")

Hyperlinks

. MathWorks
Toomoxm Fynctlons

Solution sBuy """""" Englmlbresentatmn

Reference, P rOd u Cthn taCtPrﬁLa;?;tlon
Updates Trial EXampleS NOteS Help

_____
Bk fasalla el

Documentatlon

Dxusschlar o

Releaseci; *“pdpfb Text_DuspIay

PrEdlctlon PDF Started UnltEd MATLAB

Analytics Sof’[wa € Answers

. Licensin
Downloads Gettmg Modelll"lg ’
Installation Community

Get HTML Attributes

Get the class attributes from the paragraph elements in the HTML tree.

subtrees = findElement(tree,'p');
attr = "class";
str = getAttribute(subtrees,attr)

str = 21x1 string array
<missing>
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<missing>

"add _margin 5"
<missing>
<missing>
<missing>
<missing>
<missing>
"category desc"
"category desc"
"category desc"
"category desc"
<missing>
<missing>
<missing>
“text-center"
<missing>
<missing>
<missing>
"copyright"
<missing>

Create a word cloud from the text contained in paragraph elements with class
"category desc".

subtrees = findElement(tree, 'p.category desc');
str = extractHTMLText(subtrees);

figure

wordcloud(str);

1-24



See Also

&M a5 preprocess
R & meort
analyss B predecinve

scatler

wdata
word

dels

Tooliox Analyhcs

See Also

extractHTMLText | findElement | getAttribute | htmlTree |
tokenizedDocument

Related Examples

. “Prepare Text Data for Analysis” on page 1-11

. “Create Simple Text Model for Classification” on page 2-2
. “Visualize Text Data Using Word Clouds” on page 3-2

. “Analyze Text Data Using Topic Models” on page 2-18
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. “Analyze Text Data Using Multiword Phrases” on page 2-9
. “Classify Text Data Using Deep Learning” on page 2-43
. “Train a Sentiment Classifier” on page 2-33
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Language Support

Text Analytics Toolbox supports the languages English and Japanese. Most Text Analytics
Toolbox functions also work with text in other languages.

Japanese Language Support

For more information about analyzing Japanese text using Text Analytics Toolbox, see
“Japanese Language Support” on page 1-31.

Language Considerations

This table summarizes how to use Text Analytics Toolbox features for other languages.

Feature

Language Consideration

Workaround

Tokenization

The tokenizedDocument
function has built-in rules
for English and Japanese
only. For English text, the
'unicode' tokenization
method of
tokenizedDocument
detects tokens using rules
based on Unicode®
Standard Annex #29 [1] and
the ICU tokenizer [2],
modified to better detect
complex tokens such as
hashtags and URLs. For
Japanese text, the 'mecab’
tokenization method detects
tokens using rules based on
the MeCab tokenizer [3].

For other languages, you
can still try using
tokenizedDocument. If
tokenizedDocument does
not produce useful results,
then try tokenizing the text
manually. To create a
tokenizedDocument array
from manually tokenized
text, set the
'TokenizeMethod' option
to 'none’.

For more information, see
tokenizedDocument.

Stop word removal

The removeStopWords
function removes English
and Japanese stop words
only.

To remove stop words from
other languages, use
removeWords and specify
your own stop words to
remove.
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Feature

Language Consideration

Workaround

Sentence detection

The addSentenceDetails
function detects sentence
boundaries based on
punctuation characters and
line number information.
For English text, the
function also uses a list of
abbreviations passed to the
function.

For other languages, you
might need to specify your
own list of abbreviations for
sentence detection. To do
this, use the
'Abbreviations' option
of addSentenceDetails.

For more information, see
addSentenceDetails.

Word clouds

For string input, the
wordcloud function uses
English and Japanese
tokenization, stop word
removal, and word
normalization.

For other languages, you
might need to manually
preprocess your text data
and specify unique words
and corresponding sizes in
wordcloud.

To specify word sizes in
wordcloud, input your data
as a table or arrays
containing the unique words
and corresponding sizes.

For more information, see
wordcloud.




Language Support

Feature Language Consideration |(Workaround

Word embeddings File input to the For files containing non-
trainWordEmbedding English text, you might need
function requires words to input a
separated by whitespace. tokenizedDocument array

to trainWordEmbedding.

To create a
tokenizedDocument array
from pretokenized text, use
the tokenizedDocument
function and set the
'TokenizeMethod' option
to 'none’.

For more information, see
trainWordEmbedding.

Language-Independent Features

Word and N-Gram Counting

The bag0fWords and bag0fNgrams functions support tokenizedDocument input
regardless of language. If you have a tokenizedDocument array containing your data,
then you can use these functions.

Modeling and Prediction

The fitlda and fitlsa functions support bagOfWords and bagOfNgrams input
regardless of language. If you have a bagOfWords or bagOfNgrams object containing
your data, then you can use these functions.

The trainWordEmbedding function supports tokenizedDocument or file input

regardless of language. If you have a tokenizedDocument array or a file containing
your data in the correct format, then you can use this function.

References

[1] Unicode Text Segmentation. https://www.unicode.org/reports/tr29/
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[2] Boundary Analysis. http://userguide.icu-project.org/boundaryanalysis

[3] MeCab: Yet Another Part-of-Speech and Morphological Analyzer. https://
taku910.github.io/mecab/

See Also

addLanguageDetails | addSentenceDetails | bag0OfNgrams | bagOfWords |
fitlda | fitlsa | normalizeWords | removeWords | stopWords |
tokenizedDocument | wordcloud

More About

. “Text Data Preparation”

. “Modeling and Prediction”
. “Display and Presentation”

. “Japanese Language Support” on page 1-31
. “Analyze Japanese Text Data” on page 1-35
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Japanese Language Support

Japanese Language Support

This topic summarizes the Text Analytics Toolbox features that support Japanese text. For
an example showing how to analyze Japanese text data, see “Analyze Japanese Text Data”
on page 1-35.

Tokenization

The tokenizedDocument function automatically detects Japanese input. Alternatively,
set the 'Language' option in tokenizedDocument to 'ja'. This option specifies the
language details of the tokens. To view the language details of the tokens, use
tokenDetails. These language details determine the behavior of the
removeStopWords, addPart0fSpeechDetails, normalizeWords, and
addSentenceDetails functions on the tokens.

Tokenize Japanese Text

Tokenize Japanese text using tokenizedDocument. The function automatically detects
Japanese text.

str = [
"IRITA. BLT, "
"EDMATELD, "
"EIZEHLES, BT, "
"EQEMNESEFIEL TS, "];
documents = tokenizedDocument(str)

documents =
4x1 tokenizedDocument:

6 tokens: 7% [T ¥A& . LD
6 tokens: X ® & T EHELL
10 tokens: Z 2 E A #EE . B T \WH
10 tokens: & M 2 M EE F L T W5,

Stop Words

To remove stop words from documents according to the token language details, use
removeStopWords. For a list of Japanese stop words set the 'Language' option in
stopWords to 'ja'.
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Remove Japanese Stop Words

Tokenize Japanese text using tokenizedDocument. The function automatically detects
Japanese text.

str = [
"ZCIEEELEDT, ETERELMATY"
"TERNODBEET—FEFAL. SEOFTY LIFTZRARDZ LA HEL, "
"FAXEETY, FAFEEEFHATHET, "1;

documents = tokenizedDocument(str);

Remove stop words using removeStopWords. The function uses the language details
from documents to determine which language stop words to remove.

documents = removeStopWords(documents)

documents =
3x1 tokenizedDocument:

4 tokens: #M . &TH EOHL
10 tokens: ft%¥ BE T—42 FIA . §F FTYLT FARS Hxk .
5 tokens: &4 . EE HZX

Part of Speech Details

The tokenDetails function, by default, includes part of speech details with the token
details.

Get Part of Speech Details of Japanese Text

Tokenize Japanese text using tokenizedDocument.

str = [
"ARICNA, TELD, "
"EDWRAHAT ELD, "
"EIZEMNES, BT, "
"EDEMNMEETEELTLDS, "
"BRETIXELC T, HFEL, "
"B DERETHITLZL, "
"FHEE3EE5BED5B, "],
documents = tokenizedDocument(str);



Japanese Language Support

For Japanese text, you can get the part-of-speech details using tokenDetails. For
English text, you must first use addPart0OfSpeechDetails.

tdetails = tokenDetails(documents);

head(tdetails)
ans=8x7 table
Token DocumentNumber LineNumber Type Language PartO0fSpeech
"R 1 1 letters ja noun
ez 1 1 letters ja adposition
" 1 1 letters ja verb
o 1 1 punctuation ja punctuation
"EmELD" 1 1 letters ja verb
oo 1 1 punctuation ja punctuation
"R 2 1 letters ja noun
"o 2 1 letters ja adposition
Lemmatization

To lemmatize tokens according to the token language details, use normalizeWords and
set the 'Style' optionto 'lemma’.

Lemmatize Japanese Text

Tokenize Japanese text using the tokenizedDocument function. The function
automatically detects Japanese text.

str = [
"EIZEMNES, BRLOATWS, "
"EQEMNESFELTWNS, "
"BRETIZELC T, HF%EL, "
"ELDERETHITEL, "1;
documents = tokenizedDocument(str);

Lemmatize the tokens using normalizeWords.
documents = normalizeWords(documents)

documents =
4x1 tokenizedDocument:
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10 tokens: Z 2 E A #< . B T W3,
10 tokens: & M 2 M EBE # I T WD,
9 tokens: ER T (X &L T . FHi+d Ly,
7 tokens: =< @ ER £T H+5 %L,

Language-Independent Features
Word and N-Gram Counting

The bag0OfWords and bag0fNgrams functions support tokenizedDocument input
regardless of language. If you have a tokenizedDocument array containing your data,
then you can use these functions.

Modeling and Prediction

The fitlda and fitlsa functions support bag0fWords and bag0fNgrams input
regardless of language. If you have a bag0OfWords or bagOfNgrams object containing
your data, then you can use these functions.

The trainWordEmbedding function supports tokenizedDocument or file input
regardless of language. If you have a tokenizedDocument array or a file containing
your data in the correct format, then you can use this function.

See Also

addLanguageDetails | addPart0fSpeechDetails | normalizeWords |
removeStopWords | stopWords | tokenDetails | tokenizedDocument

More About
. “Language Support” on page 1-27
. “Analyze Japanese Text Data” on page 1-35
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Analyze Japanese Text Data

This example shows how to import, prepare, and analyze Japanese text data using a topic
model.

Japanese text data can be large and can contain lots of noise that negatively affects
statistical analysis. For example, the text data can contain the following:

 Variations in word forms. For example, "8 L \\" ("is difficult") and "8 L A = /=" ("was
difficult")

» Words that add noise. For example, stop words such as "& & <" ("over there"), "& 7=
)" ("around"), and "& 5 5" ("there")

* Punctuation and special characters

These word clouds illustrate word frequency analysis applied to some raw text data from
"EER}IETHS" by EBERA, and a preprocessed version of the same text data.
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Raw Data
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This example first shows how to import and prepare Japanese text data, and then it shows
how to analyze the text data using a Latent Dirichlet Allocation (LDA) model. An LDA
model is a topic model that discovers underlying topics in a collection of documents and
infers the word probabilities in topics. Use these steps in preparing the text data and

fitting the model:

¢ Read HTML code from a website.

* Parse the HTML code and extract the relevant data.
* Prepare the text data for analysis using standard preprocessing techniques.
» Fit a topic model and visualize the results.

1-36



Analyze Japanese Text Data

Import Data

Read the data from "EEFIETH %" by E B R A from https://www.aozora.gr.jp/cards/
000148/files/789 14547.html using the webread function.

Specify the character encoding of the text using the weboptions function. To find the
correct character encoding for a HTML, look in the header of the HTML code. For this
file, specify the character encoding to be "Shift JIS".

url = "https://www.aozora.gr.jp/cards/000148/files/789 14547.html";
options = weboptions('CharacterEncoding', 'Shift JIS');
code = webread(url,options);

View the first few lines of the HTML code.
extractBefore(code, "<script")

ans =

'<?xml version="1.0" encoding="Shift JIS"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.0rg/TR/xhtml11/DTD/xhtml11l.dtd">

<html xml:lang="ja" >

<head>
<meta http-equiv="Content-Type" content="text/html;charset=Shift JIS" />
<meta http-equiv="content-style-type" content="text/css" />
<link rel="stylesheet" type="text/css" href="../../aozora.css" />
<title>EB#E BEIFETHLH</title>

Extract the text data from the HTML using extractHTMLText. Split the text by newline
characters.

textData = extractHTMLText(code);
textData = string(split(textData,newline));
textData(1:10)

ans = 10x1 string array
"BEEIETHD"
"EE®A"
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" BERETHD, BENTFELEN, "
" ECTENENEALEREN DN, AITELERBVLOHLO LM T y— oy —a TV =ELIFIEERE
Remove the empty lines of text.
idx = textbata == "";
textData(idx) = [1;
textData(1:10)

ans = 10x1 string array

"EEHETHD"
"ERRA"
" BEIIETHD. BENEILEL,

ECTENENEALERLEA DN, AITHLEBOLCHLOLIEMTZy—Z v —H VTV =EEIFIEERE
CHOELEDENETLELGCFEVDFFICASTE o1, LIS TEHELEFELGENTEGLIED =, F
SESAFVTRD EELERFVGL, KEABEABA—ELRAH, FLOBRSZAEEZRLTLE-
FOPKDBNTHEREEVET EMIICKEGMNH D, BETMOANL>TES LIzoLMND S EE
EEDTANFTRBICELELEZAEDIENGL, BEIEEZE S, FRNOFDIERBEFITEA O1=:

Visualize the text data in a word cloud.

figure
wordcloud(textData);
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Prepare Text Data for Analysis

Tokenize the text using tokenizedDocument and view the first few documents.

documents = tokenizedDocument (textData);
documentsRaw = documents;

documents(1:10)

ans =
10x1 tokenizedDocument:

5 tokens: B#E (X 8 T H5
2 tokens: EH #HA
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0

1
11
264
100
92
693
276

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

BEE T T HDH . BHI X FE EL

EC T EN = ™ EAE BRE AN D B, il TH FIEWL CLHLSH L = FF T
O EE D E D E T LESC & KU D 1T £5 T o 7= A LIESL
SERMNFAFN T RD & EEF W B, ={SA B> - 2B N —E 3 R
E50C 0 B T EF E EVHYT L @S I RKEG M A HE . FE T M0
EE O ENRFEZ ICBE LB Z 685 F A AL, BE XM £ 25 7

Remove the stop words.

documents = removeStopWords(documents);

documents(1:10)

ans =

10x1 tokenizedDocument:

OO ONN

117
43
46

323

122

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

X &

BB ®%A

EEW , FE £V,

Eh LAE RY O B, B LOHLH —v—=v— il \V:=F BE . FE
E4 E E LESC &KW D #- o . LIESLC FEE FH EE B . EX F
AL Ty BRE % , o e —E BRZx . D B Z2RBL LEF> ., LS
50 By R BV0VHEYT M5 KE4 it , BE M &5 25 kHhA EX .l
EE TN B BEE AEDS . BE BB . R RS KB EF EAo FUIFL,

Erase the punctuation.

documents = erasePunctuation(documents);

documents(1:10)

ans =

10x1 tokenizedDocument:

1-40

tokens:
tokens:
tokens:
tokens:
tokens:
tokens:
tokens:

TE M
EB &%\
BE B T BV

Eh EAE BE DO & BEW LHLYH Zv—=v— il WV=F BiE TE 1w J
E4x 2 E LESC & DF #o Bo LIESL EE FH EE rd 4 &< g



Analyze Japanese Text Data

38 tokens: A&& ffly B2 &% o % — BX % b 88 £ RBL LFEo L5 E-o £ |
274 tokens: £5+%< BN #HE BEVWHY @S KEQ it FE t £-o =5 s FX FlIC &L
101 tokens: &#E TN W% TE B S5€5 BE XM K Fd KB BF BA- FYRFEAE H

Lemmatize the text using normalizeWords.

documents = normalizeWords(documents);
documents(1:10)

ans =
10x1 tokenizedDocument:

2 tokens: B%E ¥

2 tokens: EB #A

0 tokens:

0 tokens:

4 tokens: HEE B £ EW

102 tokens: £nhd AL RE D<K & WL LHLH —v—=v— <l W=F FLE FE B
36 tokens: E4F £ E LIESC &KWy i #% 55 LIES< EE &FEH B hHd E4 F &
38 tokens: A& < B2 4% 2 nee — € RZ25% S b B 2 E3 LES LS ES £
274 tokens: £ 54K Bl R BEVET M5 KE4G i FZE th £5% = £ EZD HlIC LS
101 tokens: &FZE TN HE BE B A5 BE HE 2R RS KB EF EAD FYUEFLALE H

Some preprocessing steps, such as removing stop words and erasing punctuation, return
empty documents. Remove the empty documents using the removeEmptyDocuments
function.

documents = removeEmptyDocuments(documents);
Create Preprocessing Function

Creating a function that performs preprocessing can be useful to prepare different
collections of text data in the same way. For example, you can use a function to
preprocess new data using the same steps as the training data.

Create a function which tokenizes and preprocesses the text data to use for analysis. The
function preprocessJapaneseText, performs these steps:

1  Tokenize the text using tokenizedDocument.

2  FErase punctuation using erasePunctuation.

3 Remove a list of stop words (such as "& & ", "®7=V)", and "#% 5 5") using
removeStopWords.
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4 Lemmatize the words using normalizeWords.

Remove the empty documents after preprocessing using the removeEmptyDocuments
function. Removing documents after using a preprocessing function makes it easier to
remove corresponding data such as labels from other sources.

In this example, use the preprocessing function preprocessJapaneseText, listed at the
end of the example, to prepare the text data.

documents = preprocessJapaneseText(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

2 tokens: BE I
2 tokens: EBH #A
0 tokens:

0 tokens:

4

tokens: BB J§ F/IZ £EW

Remove the empty documents.

documents = removeEmptyDocuments(documents);

Get Part-of-Speech Tags

Get the token details and then view the details of the first few tokens.

tdetails = tokenDetails(documents);

head(tdetails)

ans=8x7 table
Token DocumentNumber LineNumber Type Language PartOfSpeech
"EE" 1 1 letters ja pronoun
"I 1 1 letters ja noun
"EB/" 2 1 letters ja proper-noun
"Ba" 2 1 letters ja proper-noun
"EE" 3 1 letters ja pronoun
"I 3 1 letters ja noun
"E 3 1 letters ja adverb

"lE:
"3
"E
||;"§‘,
"lE:
||q-‘
n 3
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“EEL 3 1 letters ja adjective

The PartOfSpeech variable in the table contains the part-of-speech tags of the tokens.
Create word clouds of all the nouns and adjectives, respectively.

figure

idx = tdetails.PartOfSpeech == "noun";
tokens = tdetails.Token(idx);
subplot(1,2,1)

wordcloud(tokens);

title("Nouns")

idx = tdetails.PartOfSpeech == "adjective";
tokens = tdetails.Token(idx);
subplot(1,2,2)

wordcloud(tokens);

title("Adjectives")
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Fit Topic Model

Fit a latent Dirichlet allocation (LDA) topic model to the data. An LDA model discovers
underlying topics in a collection of documents and infers word probabilities in topics.

To fit an LDA model to the data, you first must create a bag-of-words model. A bag-of-
words model (also known as a term-frequency counter) records the number of times that

words appear in each document of a collection. Create a bag-of-words model using
bagO0fWords.

bag = bag0fWords(documents);

Remove the empty documents from the bag-of-words model.
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bag = removeEmptyDocuments(bag);

Fit an LDA model with seven topics using fitlda. To suppress the verbose output, set
'"Verbose' to 0.

numTopics = 7;
mdl = fitlda(bag,numTopics, 'Verbose',0);

Visualize the first four topics using word clouds.

figure

for i = 1:4
subplot(2,2,1)
wordcloud(mdl,i);
title("Topic " + 1)

end
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Visualize multiple topic mixtures using stacked bar charts. View five input documents at
random and visualize the corresponding topic mixtures.

numDocuments = numel(documents);
idx = randperm(numDocuments,5);
documents (idx)

ans =
5x1 tokenizedDocument:

10 tokens: BEEELL Lo W5 EE S kb -oT WLDF & -F5

6 tokens: 2z 4L # 5 95 BS

26 tokens: LML IR ER %% TA &K & B BY #BRS HiK & X =5 BB LEFYIC
8 tokens: il B HIFEL X EHE EAD I S:hd
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5 tokens: EmE HIZ #l &KFE FHK

topicMixtures = transform(mdl,documents(idx));
figure

barh(topicMixtures(1:5,:), 'stacked')

xlim([0 11)

title("Topic Mixtures")

xlabel("Topic Probability")

ylabel("Document")

legend("Topic " + string(l:numTopics), 'Location', 'northeastoutside’)

Topic Mixtures

I Topic 1
N Topic 2
[ Topic 3
I Topic 4
N Topic 5
" Topic 6
I Topic 7

Document

0 02 0.4 0.6 08 1
Topic Probability

Example Preprocessing Function
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The function preprocessJapaneseText, performs these steps:

1 Tokenize the text using tokenizedDocument.
Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "&Z ", "®z¥)", and " 5 5") using
removeStopWords.

4 Lemmatize the words using normalizeWords.
function documents = preprocessJapaneseText(textData)

% Tokenize the text.
documents = tokenizedDocument(textData);

% Erase the punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Lemmatize the words.

documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

addPartOfSpeechDetails | normalizeWords | removeStopWords | stopWords |
tokenDetails | tokenizedDocument

More About
. “Language Support” on page 1-27

See Also
Related Examples

. “Create Simple Text Model for Classification” on page 2-2
. “Analyze Text Data Using Topic Models” on page 2-18
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See Also

“Analyze Text Data Using Multiword Phrases” on page 2-9
“Analyze Text Data Containing Emojis” on page 2-25

“Train a Sentiment Classifier” on page 2-33

“Classify Text Data Using Deep Learning” on page 2-43
“Generate Text Using Deep Learning” (Deep Learning Toolbox)
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* “Create Simple Text Model for Classification” on page 2-2

* “Analyze Text Data Using Multiword Phrases” on page 2-9

* “Analyze Text Data Using Topic Models” on page 2-18

* “Analyze Text Data Containing Emojis” on page 2-25
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* “Classify Out-of-Memory Text Data Using Custom Mini-Batch Datastore”
on page 2-69

* “Choose Number of Topics for LDA Model” on page 2-75
* “Compare LDA Solvers” on page 2-80
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Create Simple Text Model for Classification

2-2

This example shows how to train a simple text classifier on word frequency counts using a
bag-of-words model.

You can create a simple classification model which uses word frequency counts as
predictors. This example trains a simple classification model to predict the event type of
weather reports using text descriptions.

To reproduce the results of this example, set rng to 'default’.
rng('default")
Load and Extract Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType','string');
head(data)

ans=8x16 table
Time event id state event type d:

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"
15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

Remove rows with empty reports.

idx = strlength(data.event narrative) == 0;

data(idx,:) = [1;

Convert the labels in the event type column of the table to categorical and view the
distribution of the classes in the data using a histogram.
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Frequency

data.event type = categorical(data.event type);
figure

h = histogram(data.event type);

xlabel("Class")

ylabel("Frequency")

title("Class Distribution")

Class Distribution
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The classes of the data are imbalanced, with several classes containing few observations.
To ensure that you can partition the data so that the partitions contain observations for

each class, remove any classes which appear fewer than ten times.

Get the frequency counts of the classes and their names from the histogram.
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2-4

classCounts = h.BinCounts;
classNames = h.Categories;

Find the classes containing fewer than ten observations and remove these infrequent
classes from the data.

idxLowCounts = classCounts < 10;

infrequentClasses = classNames (idxLowCounts);

idxInfrequent = ismember(data.event type,infrequentClasses);
data(idxInfrequent,:) = [1;

Partition the data into a training partition and a held-out test set. Specify the holdout
percentage to be 10%.

cvp = cvpartition(data.event type, 'Holdout',0.1);
dataTrain = data(cvp.training,:);
dataTest = data(cvp.test,:);

Extract the text data and labels from the tables.

textDataTrain = dataTrain.event narrative;
textDataTest = dataTest.event narrative;
YTrain = dataTrain.event type;

YTest = dataTest.event type;

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives, performs the following steps in
order:

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

N o0 o1 A W N R

Lemmatize the words using normalizeWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.
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documents = preprocessWeatherNarratives(textDataTrain);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two foot deep standing water develop street winthrop unive..
(3,1) 9 tokens: nws columbia relayed report tree blow down tom hall

(4,1) 10 tokens: medium report two tree blow down 140 old fort area

(5,1) 8 tokens: few tree limb great inches down hwy roseland

Create a bag-of-words model from the tokenized documents.

bag bagO0fWords (documents)
bag =
bagOfWords with properties:

Counts: [25316x17458 double]
Vocabulary: [1x17458 string]
NumWords: 17458
NumDocuments: 25316

Remove words from the bag-of-words model that do not appear more than two times in
total. Remove any documents containing no words from the bag-of-words model, and
remove the corresponding entries in labels.

bag = removelInfrequentWords(bag,2);
[bag,idx] = removeEmptyDocuments(bag);
YTrain(idx) = [];

bag

bag =
bagOfWords with properties:

Counts: [25315x6515 double]
Vocabulary: [1x6515 string]
NumWords: 6515
NumDocuments: 25315
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Train Supervised Classifier

Train a supervised classification model using the word frequency counts from the bag-of-
words model and the labels.

Train a multiclass linear classification model using fitcecoc. Specify the Counts
property of the bag-of-words model to be the predictors, and the event type labels to be
the response. Specify the learners to be linear. These learners support sparse data input.

XTrain = bag.Counts;
mdl = fitcecoc(XTrain,YTrain, 'Learners', 'linear’')

mdl =
classreg.learning.classif.CompactClassificationECOC
ResponseName: 'Y'
ClassNames: [1x39 categoricall
ScoreTransform: 'none'’
BinarylLearners: {741x1 cell}
CodingMatrix: [39x741 double]

Properties, Methods

For a better fit, you can try specifying different parameters of the linear learners. For
more information on linear classification learner templates, see templateLinear.

Test Classifier

Predict the labels of the test data using the trained model and calculate the classification
accuracy. The classification accuracy is the proportion of the labels that the model
predicts correctly.

Preprocess the test data using the same preprocessing steps as the training data. Encode
the resulting test documents as a matrix of word frequency counts according to the bag-
of-words model.

documentsTest = preprocessWeatherNarratives(textDataTest);
XTest = encode(bag,documentsTest);

Predict the labels of the test data using the trained model and calculate the classification
accuracy.

YPred = predict(mdl,XTest);
acc = sum(YPred == YTest)/numel(YTest)
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acc = 0.8729

Predict Using New Data

Classify the event type of new weather reports. Create a string array containing the new
weather reports.

str=1[ ...
"A large tree is downed and blocking traffic outside Apple Hill."
"Damage to many car windshields in parking lot."
"Lots of water damage to computer equipment inside the office."];
documentsNew = preprocessWeatherNarratives(str);
XNew = encode(bag,documentsNew) ;
labelsNew = predict(mdl,XNew)

labelsNew = 3x1 categorical array
Thunderstorm Wind
Thunderstorm Wind
Flash Flood

Example Preprocessing Function
The function preprocessWeatherNarratives, performs the following steps in order:

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

N 6o o A W N K

Lemmatize the words using normalizeWords.

function documents = preprocessWeatherNarratives(textData)
% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);
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2-8

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents
documents

removeShortWords (documents,?2);
removeLongWords (documents,15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

addPart0fSpeechDetails | bag0OfWords | encode | erasePunctuation |
normalizeWords | removelLongWords | removeShortWords | removeStopWords |
tokenizedDocument | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Analyze Text Data Containing Emojis” on page 2-25

. “Train a Sentiment Classifier” on page 2-33

. “Classify Text Data Using Deep Learning” on page 2-43

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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Analyze Text Data Using Multiword Phrases

This example shows how to analyze text using n-gram frequency counts.

N-Grams

An n-gram is a tuple of # consecutive words. For example, a bigram (the case when
n=12)isqa pair of consecutive words such as "heavy rainfall". A unigram (the case when

n=lyisa single word. A bag-of-n-grams model records the number of times that
different n-grams appear in document collections.

Using a bag-of-n-grams model, you can retain more information on word ordering in the
original text data. For example, a bag-of-n-grams model is better suited for capturing
short phrases which appear in the text, such as "heavy rainfall" and "thunderstorm
winds".

To create a bag-of-n-grams model, use bag0fNgrams. You can input bagOfNgrams
objects into other Text Analytics Toolbox functions such as wordcloud and fitlda.

Load and Extract Text Data
To reproduce the results of this example, set rng to 'default’.
rng('default')

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Remove the rows with
empty reports.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'String');
idx = strlength(data.event narrative) == 0;

data(idx,:) = [1];
Extract the text data from the table and view the first few reports.

textData

= data.event narrative;
textData(1l:5)

ans = 5x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
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"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."
"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives listed at the end of the
example, performs the following steps:

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removeLongWords.

N o o1 A W N

Lemmatize the words using normalizeWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

documents

= preprocessWeatherNarratives(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two foot deep standing water develop street winthrop unive..
(3,1) 9 tokens: nws columbia relayed report tree blow down tom hall
(4,1)
(5,1)

10 tokens: medium report two tree blow down i40 old fort area
8 tokens: few tree limb great inches down hwy roseland

Create Word Cloud of Bigrams

Create a word cloud of bigrams by first creating a bag-of-n-grams model using
bag0fNgrams, and then inputting the model to wordcloud.

To count the n-grams of length 2 (bigrams), use bag0fNgrams with the default options.
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bag = bag0fNgrams(documents)

bag =

bag0OfNgrams with properties:

Counts:
Vocabulary:
Ngrams:
NgramLengths:
NumNgrams:
NumDocuments:

Visualize the bag-of-n-grams model using a word cloud.

figure
wordcloud(bag);

[28138x117043 double]
[1x18409 string]
[117043%x2 string]

2

117043

28138

title("Weather Reports: Preprocessed Bigrams")
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Weather Reports: Preprocessed Bigrams
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Fit Topic Model to Bag-of-N-Grams

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers the word probabilities in topics.

Create an LDA topic model with 10 topics using fitlda. The function fits an LDA model
by treating the n-grams as single words.

mdl = fitlda(bag,10);

Initial topic assignments sampled in 0.741989 seconds.

| Iteration | Time per | Relative | Training | Topic | Topic |
| | iteration | change in | perplexity | concentration | concentration |
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| | (seconds) | log(L) | | | iterations |
| 0 | 2.81 | | 2.043e+04 | 2.500 | 0 |
| 1| 3.62 | 6.8345e-02 | 1.083e+04 | 2.500 | 0 |
| 2 | 3.54 | 1.9129e-03 | 1.064e+04 | 2.500 | 0 |
| 3 3.79 | 2.4671e-04 | 1.061le+04 | 2.500 | 0 |
| 4 | 3.81 | 8.5912e-05 | 1.060e+04 | 2.500 | 0 |

Visualize the first four topics as word clouds.

figure
for i = 1:4

end

subplot(2,2,1)
wordcloud(mdl,1i);

title("LDA Topic " + i)

2-13



2 Modeling and Prediction

LDA Topic 1 LDA Topic 2
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The word clouds highlight commonly co-occuring bigrams in the LDA topics. The function
plots the bigrams with sizes according to their probabilities for the specified LDA topics.

Analyze Text Using Longer Phrases

To analyze text using longer phrases, specify the 'NGramLengths' option in
bagOfNgrams to be a larger value.

When working with longer phrases, it can be useful to keep stop words in the model. For
example, to detect the phrase "is not happy", keep the stop words "is" and "not" in the
model.

Preprocess the text. Erase the punctuation using erasePunctuation, and tokenize
using tokenizedDocument.

2-14



Analyze Text Data Using Multiword Phrases

cleanTextData = erasePunctuation(textData);
documents = tokenizedDocument(cleanTextData);

To count the n-grams of length 3 (trigrams), use bag0fNgrams and specify
'"NGramLengths' to be 3.

bag = bag0fNgrams(documents, 'NGramLengths',3);

Visualize the bag-of-n-grams model using a word cloud. The word cloud of trigrams better
shows the context of the individual words.

figure
wordcloud(bag);
title("Weather Reports: Trigrams")

Weather Reports: Trigrams
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View the top 10 trigrams and their frequency counts using topkngrams.
tbl = topkngrams(bag,10)

tbl=10x3 table

Ngram Count NgramLength
"inches" "of" "snow" 2075 3
"across" "the" "county" 1318 3
"were" "blown" "down" 1189 3
"wind" "gust"” "of" 934 3
"A" “tree" "was" 860 3
"the" "intersection" "of" 812 3
"inches" "of" "rain" 739 3
"hail" "was" "reported" 648 3
"was" “blown" "down" 638 3
"and" "power" "lines" 631 3

Example Preprocessing Function
The function preprocessWeatherNarratives performs the following steps in order:

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removeLongWords.

N 6O o A W N R

Lemmatize the words using normalizeWords.

function [documents] = preprocessWeatherNarratives(textData)

% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);



See Also

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents
documents

removeShortWords (documents,?2);
removeLongWords (documents,15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

addPart0fSpeechDetails | bag0OfNgrams | bag0fWords | erasePunctuation |
fitlda | ldaModel | normalizeWords | removeLongWords | removeShortWords |
removeStopWords | tokenizedDocument | topkngrams | wordcloud

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Containing Emojis” on page 2-25

. “Analyze Text Data Using Topic Models” on page 2-18

. “Train a Sentiment Classifier” on page 2-33

. “Classify Text Data Using Deep Learning” on page 2-43

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

2-17



2 Modeling and Prediction

Analyze Text Data Using Topic Models

2-18

This example shows how to use the Latent Dirichlet Allocation (LDA) topic model to
analyze text data.

A Latent Dirichlet Allocation (LDA) model is a topic model which discovers underlying
topics in a collection of documents and infers the word probabilities in topics.

To reproduce the results of this example, set rng to 'default’.
rng('default"')

Load and Extract Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

data = readtable("weatherReports.csv", 'TextType', 'string');
head(data)

ans=8x16 table
Time event id state event type d:

22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
15-Jul-2016 17:15:00 6.5182e+05 "SOUTH CAROLINA" "Heavy Rain"
15-Jul-2016 17:25:00 6.5183e+05 "SOUTH CAROLINA" "Thunderstorm Wind"
16-Jul-2016 12:46:00 6.5183e+05 "NORTH CAROLINA" "Thunderstorm Wind"
15-Jul-2016 14:28:00 6.4332e+05 "MISSOURI" "Hail"

15-Jul-2016 16:31:00 6.4332e+05 "ARKANSAS™" "Thunderstorm Wind"
15-Jul-2016 16:03:00 6.4343e+05 "TENNESSEE" "Thunderstorm Wind"
15-Jul-2016 17:27:00 6.4344e+05 "TENNESSEE" "Hail"

Extract the text data from the field event _narrative.

textData = data.event narrative;
textData(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."
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"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."

"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."

"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Prepare Text Data for Analysis

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessWeatherNarratives, performs the following steps in
order:

Convert the text data to lowercase using Lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

N O A W N R

Lemmatize the words using normalizeWords.

Use the example preprocessing function preprocessWeatherNarratives to prepare
the text data.

documents = preprocessWeatherNarratives(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two foot deep standing water develop street winthrop unive..
(3,1) 9 tokens: nws columbia relayed report tree blow down tom hall
(4,1)
(5,1)

10 tokens: medium report two tree blow down i40 old fort area
0 tokens:

Create a bag-of-words model from the tokenized documents.

bag = bagOfWords(documents)
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bag =
bagOfWords with properties:

Counts: [36176x18410 double]
Vocabulary: [1x18410 string]
NumWords: 18410
NumDocuments: 36176

Remove words from the bag-of-words model that have do not appear more than two times
in total. Remove any documents containing no words from the bag-of-words model.

bag = removelnfrequentWords(bag,2);
bag = removeEmptyDocuments(bag)
bag =

bag0fWords with properties:

Counts: [28137x6952 double]
Vocabulary: [1x6952 string]
NumWords: 6952
NumDocuments: 28137

Fit LDA Model

Fit an LDA model with 7 topics. For an example showing how to choose the number of
topics, see “Choose Number of Topics for LDA Model” on page 2-75. To suppress
verbose output, set 'Verbose' to 0.

numTopics = 7;
mdl = fitlda(bag,numTopics, 'Verbose',0);

If you have a large dataset, then the stochastic approximate variational Bayes solver is
usually better suited as it can fit a good model in fewer passes of the data. The default
solver for fitlda (collapsed Gibbs sampling) can be more accurate at the cost of taking
longer to run. To use stochastic approximate variational Bayes, set the 'Solver' option
to 'savb'. For an example showing how to compare LDA solvers, see “Analyze Text Data
Using Topic Models” on page 2-18.

Visualize Topics Using Word Clouds

You can use word clouds to view the words with the highest probabilities in each topic.
Visualize the first four topics using word clouds.
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figure;

for topicldx = 1:4
subplot(2,2,topicIdx)
wordcloud(mdl, topicIdx);
title("Topic " + topicIdx)

end
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View Mixtures of Topics in Documents

Use transform to transform the documents into vectors of topic probabilities.
newDocument = tokenizedDocument("A tree is downed outside Apple Hill Drive, Natick");

topicMixture = transform(mdl, newDocument);
figure
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bar(topicMixture)

xlabel("Topic Index")
ylabel("Probability")
title("Document Topic Probabilities")

Document Topic Probabilities
0.6 . . . . .

0.5

0.4

Frobability
=
Lad

=
[ %]

0.1

Topic Index

Visualize multiple topic mixtures using stacked bar charts. Visualize the topic mixtures of
the first 5 input documents.

figure

topicMixtures = transform(mdl,documents(1:5));
barh(topicMixtures(1:5,:), 'stacked"')

xlim([0 1])

title("Topic Mixtures")

xlabel("Topic Probability")
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ylabel("Document")
legend("Topic " + string(l:numTopics), 'Location', 'northeastoutside")

Topic Mixtures

N Topic 1
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-Tclp'u: 5
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Cocument
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Topic Probability

Example Preprocessing Function

The function preprocessWeatherNarratives, performs the following steps in order:

Convert the text data to lowercase using lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

gua A W N R
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6 Remove words with 15 or more characters using removeLongWords.
7 Lemmatize the words using normalizeWords.

function [documents] = preprocessWeatherNarratives(textData)
% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents
documents

removeShortWords (documents,?2);
removelLongWords (documents, 15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

addPart0fSpeechDetails | bag0fWords | fitlda | ldaModel |
removeEmptyDocuments | removeInfrequentWords | removeStopWords |
tokenizedDocument | transform | wordcloud

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Containing Emojis” on page 2-25

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-33

. “Classify Text Data Using Deep Learning” on page 2-43

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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Analyze Text Data Containing Emojis

This example shows how to analyze text data containing emojis.

Emojis are pictorial symbols that appear inline in text. When writing text on mobile
devices such as smartphones and tablets, people use emojis to keep the text short and
convey emotion and feelings.

You also can use emojis to analyze text data. For example, use them to identify relevant
strings of text or to visualize the sentiment or emotion of the text.

When working with text data, emojis can behave unpredictably. Depending on your
system fonts, your system might not display some emojis correctly. Therefore, if an emoji
is not displayed correctly, then the data is not necessarily missing. Your system might be
unable to display the emoji in the current font.

Composing Emojis

In most cases, you can read emojis from a file (for example, by using extractFileText,
extractHTMLText, or readtable) or by copying and pasting them directly into
MATLAB®. Otherwise, you must compose the emoji using Unicode UTF16 code units.

Some emojis consist of multiple Unicode UTF16 code units. For example, the "smiling
face with sunglasses" emoji ([J with code point U+1F60E) is a single glyph but comprises
two UTF16 code units "D83D" and "DEOE". Create a string containing this emoji using
the compose function, and specify the two code units with the prefix "\x".

emoji = compose("\xD83D\xDEOE")

emoji =

0

First get the Unicode UTF16 code units of an emoji. Use char to get the numeric
representation of the emoji, and then use dec2hex to get the corresponding hex value.

codeUnits

dec2hex(char(emoji))
codeUnits = 2x4 char array

'D83D"
'DEOQE"
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Reconstruct the composition string using the strjoin function with the empty delimiter

formatSpec = strjoin("\x" + codeUnits,"")

formatSpec =
"\xD83D\xDEOE"

emoji = compose(formatSpec)

emoji =

"
Import Text Data

Extract the text data in the file weekendUpdates.x1sx using readtable. The file
weekendUpdates.x1lsx contains status updates containing the hashtags "#weekend"
and "#vacation".

filename = "weekendUpdates.xlsx";
tbl = readtable(filename, 'TextType', 'string');
head(tbl)

ans=8x2 table
ID TextData

"Happy anniversary! « Next stop: Paris! » #vacation"

"Haha, BBQ on the beach, engage smug mode! [J [J « [J #vacation"

"getting ready for Saturday night [J #yum #weekend ["

"Say it with me - I NEED A #VACATION!!! &"

"0 Chilling [0 at home for the first time in ages..This is the life! [J #weeken
"My last #weekend before the exam [J [J."

"can't believe my #vacation is over [J so unfair"

"Can't wait for tennis this #weekend 00 O"

oOoNOOUTEA, WN -

Extract the text data from the field TextData and view the first few status updates.

textData = tbl.TextData;
textData(1:5)

ans = 5x1 string array
"Happy anniversary! « Next stop: Paris! » #vacation"
"Haha, BBQ on the beach, engage smug mode! [J J « [J #vacation"
"getting ready for Saturday night [J #yum #weekend ["
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"Say it with me - I NEED A #VACATION!!! "
"0 Chilling [ at home for the first time in ages..This is the life! [J #weekend"

Visualize the text data in a word cloud.

figure
wordcloud(textData);
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Filter Text Data by Emoji

Identify the status updates containing a particular emoji using the contains function.
Find the indices of the documents containing the "smiling face with sunglasses" emoji ([J
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with code U+1F60E). This emoji comprises the two Unicode UTF16 code units "D83D"
and "DEOE".

emoji = compose("\xD83D\xDEOE");
idx = contains(textData,emoji);
textDataSunglasses = textData(idx);
textDataSunglasses(1:5)

ans = 5x1 string array
"Haha, BBQ on the beach, engage smug mode! [J J « [J #vacation"
"getting ready for Saturday night [J #yum #weekend ["
"0 Chilling [ at home for the first time in ages..This is the life! [J #weekend"
"0 Check the out-of-office crew, we are officially ON #VACATION!! 00"
"Who needs a #vacation when the weather is this good =* [J"

Visualize the extracted text data in a word cloud.

figure
wordcloud(textDataSunglasses);
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Extract and Visualize Emojis
Visualize all the emojis in text data using a word cloud.

Extract the emojis. First tokenize the text using tokenizedDocument, and then view the
first few documents.

documents = tokenizedDocument (textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

11 tokens: Happy anniversary ! « Next stop : Paris ! » #vacation
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16 tokens: Haha , BBQ on the beach , engage smug mode ! [J [J « [ #vacation

9 tokens: getting ready for Saturday night [J #yum #weekend []

13 tokens: Say it with me - I NEED A #VACATION ! ! ! @

19 tokens: [J Chilling [J at home for the first time in ages .. This is the life ! [J j

The tokenizedDocument function automatically detects emoji and assigns the token
type "emoji". View the first few token details of the documents using the
tokenDetails function.

tdetails = tokenDetails(documents);

head(tdetails)
ans=8x5 table
Token DocumentNumber LineNumber Type Language

"Happy" 1 1 letters en
"anniversary" 1 1 letters en
e 1 1 punctuation en
"o 1 1 emoji en
“Next" 1 1 letters en
"stop" 1 1 letters en
e 1 1 punctuation en
"Paris"” 1 1 letters en

Visualize the emojis in a word cloud by extracting the tokens with token type "emoji"
and inputting them into the wordcloud function.

idx = tdetails.Type == "emoji";
tokens = tdetails.Token(idx);
figure

wordcloud(tokens);
title("Emojis")
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Emojis

See Also

tokenDetails | tokenizedDocument | wordcloud

Related Examples

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9
. “Train a Sentiment Classifier” on page 2-33

. “Classify Text Data Using Deep Learning” on page 2-43
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. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
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Train a Sentiment Classifier

This example shows how to train a classifier for sentiment analysis using an annotated list
of positive and negative sentiment words and a pretrained word embedding.

The pretrained word embedding plays several roles in this workflow. It converts words
into numeric vectors and forms the basis for a classifier. You can then use the classifier to
predict the sentiment of other words using their vector representation, and use these
classifications to calculate the sentiment of a piece of text. There are four steps in
training and using the sentiment classifier:

* Load a pretrained word embedding.
* Load an opinion lexicon listing positive and negative words.

» Train a sentiment classifier using the word vectors of the positive and negative words.
* Calculate the mean sentiment scores of the words in a piece of text.

To reproduce the results in this example, set rng to 'default’.
rng('default"')
Load Pretrained Word Embedding

Word embeddings map words in a vocabulary to numeric vectors. These embeddings can
capture semantic details of the words so that similar words have similar vectors. They
also model relationships between words through vector arithmetic. For example, the
relationship king is to queen as man is to woman is described by the equation king - man
+ woman = queen.

Load a pretrained word embedding using the fastTextWordEmbedding function. This
function requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token
Word Embedding support package. If this support package is not installed, then the
function provides a download link.

emb = fastTextWordEmbedding;

Load Opinion Lexicon

Load the positive and negative words from the opinion lexicon (also known as a sentiment
lexicon) from https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html. First, extract the
files from the . rar file into a folder named opinion-lexicon-English, and then
import the text.
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Load the data using the function readLexicon listed at the end of this example. The
output data is a table with variables Word containing the words, and Label containing a
categorical sentiment label, Positive or Negative.

data = readLexicon;
View the first few words labeled as positive.

idx = data.Label == "Positive";
head(data(idx,:))

ans=8x2 table

Word Label
"a+" Positive
"abound" Positive
"abounds" Positive
"abundance" Positive
"abundant" Positive
"accessable" Positive
"accessible" Positive
"acclaim" Positive

View the first few words labeled as negative.

idx = data.Label == "Negative";
head(data(idx,:))

ans=8x2 table

Word Label
"2-faced" Negative
"2-faces" Negative
"abnormal" Negative
"abolish" Negative
"abominable" Negative
"abominably" Negative
"abominate" Negative
"abomination" Negative
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Prepare Data for Training

To train the sentiment classifier, convert the words to word vectors using the pretrained
word embedding emb. First remove the words that do not appear in the word embedding
emb.

idx = ~isVocabularyWord(emb,data.Word);
data(idx,:) = [1;

Set aside 10% of the words at random for testing.

numWords = size(data,l);

cvp = cvpartition(numWords, 'HoldOut',0.1);
dataTrain = data(training(cvp),:);
dataTest = data(test(cvp),:);

Convert the words in the training data to word vectors using word2vec.

wordsTrain = dataTrain.Word;
XTrain word2vec(emb,wordsTrain) ;
YTrain dataTrain.Label;

Train Sentiment Classifier

Train a support vector machine (SVM) classifier which classifies word vectors into
positive and negative categories.

mdl = fitcsvm(XTrain,YTrain);

Test Classifier

Convert the words in the test data to word vectors using word2vec.
wordsTest = dataTest.Word;

XTest = word2vec(emb,wordsTest);

YTest = dataTest.Label;

Predict the sentiment labels of the test word vectors.
[YPred,scores] = predict(mdl,XTest);

Visualize the classification accuracy in a confusion matrix.

figure
confusionchart(YTest,YPred);
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True class

Megative ¥
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Positive 189 15

Positive Megative
Predicted class

Visualize the classifications in word clouds. Plot the words with positive and negative
sentiments in word clouds with word sizes corresponding to the prediction scores.

figure

subplot(1,2,1)

idx = YPred == "Positive";
wordcloud(wordsTest (idx),scores(idx,1));
title("Predicted Positive Sentiment")

subplot(1,2,2)
wordcloud(wordsTest (~idx),scores(~idx,2));
title("Predicted Negative Sentiment")
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Calculate Sentiment of Collections of Text

To calculate the sentiment of a piece of text, for example a review, predict the sentiment
score of each word in the text and take the mean sentiment score.

Load the Airbnb Summary Review data (Boston, Massachusetts, United States, 06
October, 2017) from http://insideairbnb.com/get-the-data.html. Read the data into a table
and specify to read the text data as string.

filename = "reviews.csv";
dataReviews = readtable(filename, 'TextType', 'string');

Extract the text data from the comments variable and view the first few reviews.
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textData = dataReviews.comments;
textData(1:10)

ans = 10x1 string array

"Pretty nice, quiet, cozy place to stay. Toiletries, snacks, coffee, WiFi, cable T
"The host was extremely welcoming and obliging. The neighborhood is quiet and charr
"Nice and easy stay - with good accommodations especially the cable TV "

"The host has been very accommodating and helpful. The description in the ad is ac
"It's a great quiet stay."

"Couldn't have been happier. The apartment was well renovated, very clean and conve
"The apartment is very nice- as described and very convenient. The real superstar
"This is a brand new gorgeous place, very clean, bright and welcoming. Estee espec:
"Estee and Josh are great hosts. Very welcoming. Made us feel like we were staying
"Estee was super sweet and so very accommodating! The apartment was nicely renovate

Create a function which tokenizes and preprocesses the text data so it can be used for
analysis. The function preprocessReviews, listed at the end of the example, performs
the following steps in order:

Convert the text data to lowercase using lLower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

A W N R

Remove stop words (such as "and", "of", and "the") using removeStopWords.

Use the preprocessing function preprocessReviews to prepare the text data. This step
can take a few minutes to run.

documents = preprocessReviews(textData);
Remove the words from the documents that do not appear in the word embedding emb.

idx = ~isVocabularyWord(emb,documents.Vocabulary);
documents = removeWords(documents,idx);

To visualize how well the sentiment classifier generalizes to the reviews, classify the
sentiments on the words that occur in the reviews, but not in the training data and
visualize them in word clouds. Use the word clouds to manually check that the classifier
behaves as expected.

words = documents.Vocabulary;
words (ismember(words,wordsTrain)) = [];
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vec = word2vec(emb,words);
[YPred,scores] = predict(mdl,vec);

figure

subplot(1,2,1)

idx = YPred == "Positive";
wordcloud(words(idx),scores(idx,1));
title("Predicted Positive Sentiment")

subplot(1,2,2)
wordcloud(words(~idx),scores(~idx,2));
title("Predicted Negative Sentiment")
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To calculate the sentiment of a given piece of text, compute the sentiment score for each
word in the text and calculate the mean sentiment score.

For a selection of the documents, calculate the mean sentiment score. For each
document, convert the words to word vectors, predict the sentiment score on the word
vectors, transform the scores using the score-to-posterior transform function and then
calculate the mean sentiment score.

idx = [7 34 331 1788 1820 1831 2185 21892 63734 76832 113276 120210];
for i = 1:numel(idx)

words = string(documents(idx(i)));

vec = word2vec(emb,words);

[~,scores] = predict(mdl,vec);

sentimentScore(i) = mean(scores(:,1));
end

View the predicted sentiment scores with the text data. Scores greater than 0 correspond
to positive sentiment, scores less than 0 correspond to negative sentiment, and scores
close to 0 correspond to neutral sentiment.

[sentimentScore' textData(idx)]

ans = 12x2 string array

"0.85721" "The apartment is very nice- as described and very convenient. The
"2.0453" "Estee was the perfect Airbnb host. The apartment was comfortable,
"-0.37918" "The apartment is not apropriate for 5 people. Is too little and We
"0.94799" "Truly a quaint place in Beacon Hill. Comfortable walking distance
"-0.077053" “the neibourhood is perfect!!!!!, as it is very close to Bowdoin T ¢
"0.17846" "Although we didn't meet JJ, we felt he was very quick to respond.
"-0.31603" "In the apartment it was very dirty .«we walked in and there instin
"-4.0895" "Blackmail!"

“1.658" "Outstanding stay. The apartment is world-class - very, very nice.
"1.7102" "I had an amazing stay at Carney's. The hosts are friendly and very
"0.67654" "My husband and I came to Boston for our 1 year anniversary. We're
"-0.21651" "My fiancA© and I had just gotten engaged and wanted to stay somewh

Sentiment Lexicon Reading Function

This function reads the positive and negative words from the sentiment lexicon and
returns a table. The table contains variables Word and Label, where Label contains
categorical values Positive and Negative corresponding to the sentiment of each
word.
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function data = readlLexicon

% Read positive words

fidPositive = fopen(fullfile('opinion-lexicon-English', 'positive-words.txt"'));
C = textscan(fidPositive, '%s', 'CommentStyle’,"';"');

wordsPositive = string(C{1});

% Read negative words

fidNegative = fopen(fullfile('opinion-lexicon-English', 'negative-words.txt"'));
C = textscan(fidNegative, '%s', 'CommentStyle',"';");

wordsNegative = string(C{1});

fclose all;

% Create table of labeled words

words = [wordsPositive;wordsNegative];

labels = categorical(nan(numel(words),1));

labels(1l:numel (wordsPositive)) = "Positive";
labels(numel(wordsPositive)+l:end) = "Negative";

data = table(words, labels, 'VariableNames', {'Word', 'Label'});
end

Preprocessing Function
The function preprocessReviews performs the following steps:

Convert the text data to lowercase using lLower.
Tokenize the text using tokenizedDocument.
Erase punctuation using erasePunctuation.

A W N =

Remove stop words (such as "and", "of", and "the") using removeStopWords.
function [documents] = preprocessReviews (textData)

% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);
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% Remove a list of stop words.
documents = removeStopWords(documents);

end

See Also

bagO0fWords | erasePunctuation | fastTextWordEmbedding | removeStopWords |
removeWords | tokenizedDocument | word2vec | wordcloud

Related Examples

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Containing Emojis” on page 2-25

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Classify Text Data Using Deep Learning” on page 2-43

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)



Classify Text Data Using Deep Learning

Classify Text Data Using Deep Learning

This example shows how to classify text descriptions of weather reports using a deep
learning long short-term memory (LSTM) network.

Text data is naturally sequential. A piece of text is a sequence of words, which might have
dependencies between them. To learn and use long-term dependencies to classify
sequence data, use an LSTM neural network. An LSTM network is a type of recurrent
neural network (RNN) that can learn long-term dependencies between time steps of
sequence data.

To input text to an LSTM network, first convert the text data into numeric sequences. You
can achieve this using a word encoding which maps documents to sequences of numeric
indices. For better results, also include a word embedding layer in the network. Word
embeddings map words in a vocabulary to numeric vectors rather than scalar indices.
These embeddings capture semantic details of the words, so that words with similar
meanings have similar vectors. They also model relationships between words through
vector arithmetic. For example, the relationship "king is to queen as man is to woman" is
described by the equation king - man + woman = queen.

There are four steps in training and using the LSTM network in this example:

* Import and preprocess the data.

* Convert the words to numeric sequences using a word encoding.
* Create and train an LSTM network with a word embedding layer.
* Classify new text data using the trained LSTM network.

Import Data

Import the weather reports data. This data contains labeled textual descriptions of
weather events. To import the text data as strings, specify the text type to be 'string"'.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
head(data)
ans=8x16 table
Time event id state event type
22-Jul-2016 16:10:00 6.4433e+05 "MISSISSIPPI" "Thunderstorm Wind"
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15-Jul-2016
15-Jul-2016
16-Jul-2016
15-Jul-2016
15-Jul-2016
15-Jul-2016
15-Jul-2016

Remove the rows of the table with empty reports.

idxEmpty = strlength(data.event narrative)
data(idxEmpty,:) = [1;

17:
17:

12

14:
16:
16:
17:

15:
25:
146:
28:
31:
03:
27:

[e)le) o) o) e) o) Ne)]

.5182e+05
.5183e+05
.5183e+05
.4332e+05
.4332e+05
.4343e+05
.4344e+05

“SOUTH CAROLINA"
“SOUTH CAROLINA"
“NORTH CAROLINA"
"MISSOURI"
“ARKANSAS "
“TENNESSEE"
“TENNESSEE"

== 0;

"Heavy Rain"
"Thunderstorm Wind"
"Thunderstorm Wind"
"Hail"
"Thunderstorm Wind"
"Thunderstorm Wind"
"Hail"

The goal of this example is to classify events by the label in the event type column. To
divide the data into classes, convert these labels to categorical.

data.event type

categorical(data.event type);

View the distribution of the classes in the data using a histogram. To make the labels

easier to read, increase the width of the figure.

f = figure;

f.Position(3) = 1.5*f.Position(3);

h = histogram(data.event type);

xlabel("Class")

ylabel("Frequency")
title("Class Distribution")
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The classes of the data are imbalanced, with many classes containing few observations.
When the classes are imbalanced in this way, the network might converge to a less
accurate model. To prevent this problem, remove any classes which appear fewer than
ten times.

Get the frequency counts of the classes and the class names from the histogram.

classCounts = h.BinCounts;
classNames = h.Categories;

Find the classes containing fewer than ten observations.

idxLowCounts = classCounts < 10;
infrequentClasses = classNames (idxLowCounts)

infrequentClasses = 1Ix8 cell array
{'Freezing Fog'} {'Hurricane'} {'Lakeshore Flood'} {'Marine Dense Fog'}

Remove these infrequent classes from the data. Use removecats to remove the unused
categories from the categorical data.
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idxInfrequent = ismember(data.event type,infrequentClasses);
data(idxInfrequent,:) = [];
data.event type = removecats(data.event type);

Now the data is sorted into classes of reasonable size. The next step is to partition it into
sets for training, validation, and testing. Partition the data into a training partition and a
held-out partition for validation and testing. Specify the holdout percentage to be 30%.

cvp = cvpartition(data.event type, 'Holdout',0.3);
dataTrain = data(training(cvp),:);
dataHeldOut = data(test(cvp),:);

Partition the held-out set again to get a validation set. Specify the holdout percentage to
be 50%. This results in a partitioning of 70% training observations, 15% validation
observations, and 15% test observations.

cvp = cvpartition(dataHeldOut.event type, 'HoldOut',0.5);
dataValidation = dataHeldOut(training(cvp),:);
dataTest = dataHeldOut(test(cvp),:);

Extract the text data and labels from the partitioned tables.

textDataTrain = dataTrain.event narrative;
textDataValidation = dataValidation.event narrative;
textDataTest = dataTest.event narrative;

YTrain = dataTrain.event type;

YValidation = dataValidation.event type;

YTest = dataTest.event type;

To check that you have imported the data correctly, visualize the training text data using a
word cloud.

figure

wordcloud(textDataTrain);
title("Training Data")
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Training Data
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Preprocess Text Data

Preprocess the training data. Convert the text to lowercase, tokenize it, and then erase
the punctuation. Do not stem or remove words, as these steps can lead to a worse word

embedding fit.

textDataTrain = lower(textDataTrain);
documentsTrain = tokenizedDocument (textDataTrain);
documentsTrain = erasePunctuation(documentsTrain);
textDataValidation = lower(textDataValidation);
documentsValidation tokenizedDocument (textDataValidation);
documentsValidation erasePunctuation(documentsValidation);
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View the first few preprocessed training documents.
documentsTrain(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 7 tokens: large tree down between plantersville and nettleton

(2,1) 37 tokens: one to two feet of deep standing water developed on a stre..
(3,1) 13 tokens: nws columbia relayed a report of trees blown down along to..
(4,1) 13 tokens: media reported two trees blown down along 140 in the old f..
(5,1) 14 tokens: a few tree limbs greater than 6 inches down on hwy 18 in r..

Convert Document to Sequences

To input the documents into an LSTM network, use a word encoding to convert the
documents into sequences of numeric indices.

To create a word encoding, use the wordEncoding function.

enc = wordEncoding(documentsTrain);

The next conversion step is to pad and truncate documents so they are all the same
length. The trainingOptions function provides options to pad and truncate input
sequences automatically. However, these options are not well suited for sequences of
word vectors. Instead, pad and truncate the sequences manually. If you left-pad and
truncate the sequences of word vectors, then the training might improve.

To pad and truncate the documents, first choose a target length, and then truncate
documents that are longer than it and left-pad documents that are shorter than it. For
best results, the target length should be short without discarding large amounts of data.
To find a suitable target length, view a histogram of the training document lengths.

documentLengths = doclength(documentsTrain);
figure

histogram(documentLengths)

title("Document Lengths")

xlabel("Length")

ylabel("Number of Documents")
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Most of the training documents have fewer than 75 tokens. Use this as your target length
for truncation and padding.

Convert the documents to sequences of numeric indices using doc2sequence. To
truncate or left-pad the sequences to have length 75, set the 'Length' option to 75.

XTrain = doc2sequence(enc,documentsTrain, 'Length',75);
XTrain(1:5)
ans = 5x1 cell array

{1x75 double}

{1x75 double}

{1x75 double}

{1x75 double}
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{1x75 double}

Convert the validation documents to sequences using the same options.
XValidation = doc2sequence(enc,documentsValidation, 'Length',75);

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include
a sequence input layer and set the input size to 1. Next, include a word embedding layer
of dimension 100 and the same number of words as the word encoding. Next, include an
LSTM layer and set the number of hidden units to 180. To use the LSTM layer for a
sequence-to-label classification problem, set the output mode to ' last'. Finally, add a
fully connected layer with the same size as the number of classes, a softmax layer, and a
classification layer.

inputSize = 1;

embeddingDimension = 100;
numHiddenUnits = enc.NumWords;
hiddenSize = 180;

numClasses = numel(categories(YTrain));

layers = [ ...
sequencelnputlLayer(inputSize)
wordEmbeddinglLayer(embeddingDimension, numHiddenUnits)
lstmLayer(hiddenSize, 'OutputMode', 'last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]

layers =
6x1 Layer array with layers:

1 b Sequence Input Sequence input with 1 dimensions

2 b Word Embedding Layer Word embedding layer with 100 dimensions and 169!
3 Y LSTM LSTM with 180 hidden units

4 b Fully Connected 39 fully connected layer

5 Y Softmax softmax

6 b Classification Output crossentropyex

Specify the training options. Set the solver to 'adam’, train for 10 epochs, and set the
gradient threshold to 1. Set the initial learn rate to 0.01. To monitor the training progress,
set the 'Plots' optionto 'training-progress'. Specify the validation data using the
'ValidationData' option. To suppress verbose output, set 'Verbose' to false.
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figure
wordcloud(textData);
title("Pride and Prejudice")

Convert Text Data to Sequences

Convert the text data to sequences of character indices for the predictors and categorical
sequences for the responses.

The categorical function treats newline and whitespace entries as undefined. To create
categorical elements for these characters, replace them with the special characters "q"
(pilcrow, "\x00B6") and "-" (middle dot, "\x00B7") respectively. To prevent ambiguity,
you must choose special characters that do not appear in the text. These characters do
not appear in the training data so can be used for this purpose.
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newlineCharacter = compose("\x00B6");
whitespaceCharacter = compose("\x00B7");
textData = replace(textData, [newline " "], [newlineCharacter whitespaceCharacter]);

Loop over the text data and create a sequence of character indices representing the
characters of each observation and a categorical sequence of characters for the
responses. To denote the end of each observation, include the special character "=" (end
of text, "\x2403").

end0fTextCharacter = compose("\x2403");
numDocuments = numel(textData);
for i = 1:numDocuments

characters = textData{i};

X = double(characters);

% Create vector of categorical responses with end of text character.
charactersShifted = [cellstr(characters(2:end)')' endOfTextCharacter];
Y = categorical(charactersShifted);

XTrain{i}
YTrain{i}

X;
Y;

end

During training, by default, the software splits the training data into mini-batches and
pads the sequences so that they have the same length. Too much padding can have a
negative impact on the network performance.

To prevent the training process from adding too much padding, you can sort the training
data by sequence length, and choose a mini-batch size so that sequences in a mini-batch
have a similar length.

Get the sequence lengths for each observation.

numObservations = numel(XTrain);
for i=1:numObservations
sequence = XTrain{i};
sequencelengths(i) = size(sequence,?2);
end

Sort the data by sequence length.

[~,1idx] = sort(sequencelLengths);
XTrain Train(idx);

=X
YTrain = YTrain(idx);
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Create and Train LSTM Network

Define the LSTM architecture. Specify a sequence-to-sequence LSTM classification
network with 400 hidden units. Set the input size to be the feature dimension of the
training data. For sequences of character indices, the feature dimension is 1. Specify a
word embedding layer with dimension 200 and specify the number of words (which
correspond to characters) to be the highest character value in the input data. Set the
output size of the fully connected layer to be the number of categories in the responses.
To help prevent overfitting, include a dropout layer after the LSTM layer.

The word embedding layer learns an embedding of characters and maps each character
to a 200-dimension vector.

inputSize = size(XTrain{l},1);
numClasses = numel(categories([YTrain{:}1));
numWords = max([textData{:}1);

layers = [
sequencelnputlLayer(inputSize)
wordEmbeddinglLayer (200, numWords)
lstmLayer (400, 'OutputMode', 'sequence')
dropoutLayer(0.2);
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify to train with a mini-batch size of 32 and initial learn
rate 0.01. To prevent the gradients from exploding, set the gradient threshold to 1. To
ensure the data remains sorted, set 'Shuffle' to 'never'. To monitor the training
progress, set the 'Plots' optionto 'training-progress'. To suppress verbose
output, set 'Verbose' to false.

options = trainingOptions('adam',
'MiniBatchSize',32,...
'InitiallLearnRate',0.01,
'GradientThreshold', 1,
'Shuffle', 'never',
'Plots', 'training-progress',
'Verbose', false);

Train the network.

net = trainNetwork(XTrain,YTrain, layers,options);
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Acouracy (%)

Loss

Training Progress (20-Jul-2018 16:34:59)
Results
Validation accuracy, NiA
Training finished: Reached final fteration
Training Time
Starttime 20-4u1-2018 16:34:59
Elapsed ime: 6 min 4 sec
Training Cycle
Epach 300130
teration 1890 0f 1830
lterations per epoch 63
Maximum Herations; 1850
Valitation
Frequency: NiA
Patience NiA
Other Information
Hardware resource single GRU
Learning rate schedule:  Constant
Learning rate: 0.01
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Generate New Text

Generate the first character of the text by sampling a character from a probability
distribution according to the first characters of the text in the training data. Generate the
remaining characters by using the trained LSTM network to predict the next sequence
using the current sequence of generated text. Keep generating characters one-by-one
until the network predicts the "end of text" character.

Sample the first character according to the distribution of the first characters in the
training data.

initialCharacters = extractBefore(textData,?2);
firstCharacter = datasample(initialCharacters,1);
generatedText = firstCharacter;

Convert the first character to a numeric index.

X = double(char(firstCharacter));
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For the remaining predictions, sample the next character according to the prediction
scores of the network. The prediction scores represent the probability distribution of the
next character. Sample the characters from the vocabulary of characters given by the
class names of the output layer of the network. Get the vocabulary from the classification
layer of the network.

vocabulary = string(net.Layers(end).ClassNames);

Make predictions character by character using predictAndUpdateState. For each
prediction, input the index of the previous character. Stop predicting when the network
predicts the end of text character or when the generated text is 500 characters long. For
large collections of data, long sequences, or large networks, predictions on the GPU are
usually faster to compute than predictions on the CPU. Otherwise, predictions on the CPU
are usually faster to compute. For single time step predictions, use the CPU. To use the
CPU for prediction, set the 'ExecutionEnvironment' option of
predictAndUpdateStateto 'cpu’.

maxLength = 500;
while strlength(generatedText) < maxLength
% Predict the next character scores.
[net,characterScores] = predictAndUpdateState(net,X, 'ExecutionEnvironment', 'cpu');

% Sample the next character.
newCharacter = datasample(vocabulary,1, 'Weights',characterScores);

% Stop predicting at the end of text.

if newCharacter == endOfTextCharacter
break

end

% Add the character to the generated text.
generatedText = generatedText + newCharacter;

% Get the numeric index of the character.
X = double(char(newCharacter));
end

Reconstruct the generated text by replacing the special characters with their
corresponding whitespace and new line characters.

generatedText replace(generatedText, [newlineCharacter whitespaceCharacter], [newline '

generatedText =
"“I wish Mr. Darcy, upon latter of my sort sincerely fixed in the regard to relanth. W

2-60



See Also

To generate multiple pieces of text, reset the network state between generations using
resetState.

net = resetState(net);

See Also

doc2sequence | extractHTMLText | findElement | htmlTree | LstmLayer |
sequencelInputlLayer | tokenizedDocument | trainNetwork | trainingOptions |
wordEmbeddinglLayer | wordcloud

Related Examples

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

. “Word-By-Word Text Generation Using Deep Learning” on page 2-62

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-33

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Word-By-Word Text Generation Using Deep Learning

2-62

This example shows how to train a deep learning LSTM network to generate text word-by-
word.

To train a deep learning network for word-by-word text generation, train a sequence-to-
sequence LSTM network to predict the next word in a sequence of words. To train the
network to predict the next word, specify the responses to be the input sequences shifted
by one time step.

This example reads text from a website. It reads and parses the HTML code to extract the
relevant text, then uses a custom mini-batch datastore
documentGenerationDatastore to input the documents to the network as mini-
batches of sequence data. The datastore converts documents to sequences of numeric
word indices. The deep learning network is an LSTM network that contains a word
embedding layer.

A mini-batch datastore is an implementation of a datastore with support for reading data
in batches. You can use a mini-batch datastore as a source of training, validation, test,
and prediction data sets for deep learning applications. Use mini-batch datastores to read
out-of-memory data or to perform specific preprocessing operations when reading
batches of data.

You can adapt the custom mini-batch datastore documentGenerationDatastore.mto
your data by customizing the functions. For an example showing how to create your own
custom mini-batch datastore, see “Develop Custom Mini-Batch Datastore” (Deep Learning
Toolbox).

Load Training Data

Load the training data. Read the HTML code from Alice's Adventures in Wonderland by
Lewis Carroll from Project Gutenberg.

url = "https://www.gutenberg.org/files/11/11-h/11-h.htm";
code = webread(url);

Parse HTML Code

The HTML code contains the relevant text inside <p> (paragraph) elements. Extract the
relevant text by parsing the HTML code using htmlTree and then finding all the
elements with element name "p".


matlab:edit(fullfile(matlabroot,'examples','nnet','main','documentGenerationDatastore.m'))
https://www.gutenberg.org/files/11/11-h/11-h.htm
https://www.gutenberg.org/files/11/11-h/11-h.htm
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tree = htmlTree(code);
selector = "p";
subtrees = findElement(tree,selector);

Extract the text data from the HTML subtrees using extractHTMLText and view the
first 10 paragraphs.

textData = extractHTMLText(subtrees);
textData(1:10)

ans = 10x1 string array

"Alice was beginning to get very tired of sitting by her sister on the bank, and o
"So she was considering in her own mind (as well as she could, for the hot day mad
"There was nothing so very remarkable in that; nor did Alice think it so very much
"In another moment down went Alice after it, never once considering how in the wor

Remove the empty paragraphs and view the first 10 remaining paragraphs.

textData(textData == "") = [];
textData(1:10)

ans = 10x1 string array
"Alice was beginning to get very tired of sitting by her sister on the bank, and o
"So she was considering in her own mind (as well as she could, for the hot day mad
"There was nothing so very remarkable in that; nor did Alice think it so very much
"In another moment down went Alice after it, never once considering how in the wor
"The rabbit-hole went straight on like a tunnel for some way, and then dipped sudde
"Either the well was very deep, or she fell very slowly, for she had plenty of time
"‘Well!’ thought Alice to herself, ‘after such a fall as this, I shall think nothi
"Down, down, down. Would the fall never come to an end! ‘I wonder how many miles I
"Presently she began again. ‘I wonder if I shall fall right through the earth! How
"Down, down, down. There was nothing else to do, so Alice soon began talking again

Visualize the text data in a word cloud.
figure

wordcloud(textData);
title("Alice's Adventures in Wonderland")
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Alice's Adventures in Wonderland
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Prepare Data for Training

Create a datastore that contains the data for training using
documentGenerationDatastore. To create the datastore, first save the custom mini-
batch datastore documentGenerationDatastore.m to the path. For the predictors, this

datastore converts the documents into sequences of word indices and for the responses,
the datastore returns categorical sequences of the words shifted by one.

Tokenize the text data using tokenizedDocument.
documents = tokenizedDocument(textData);

Create a document generation datastore using the tokenized documents.
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ds = documentGenerationDatastore(documents);

To reduce the amount of padding added to the sequences, sort the documents in the
datastore by sequence length.

ds = sort(ds);
Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include
a sequence input layer and set the input size to 1. Next, include a word embedding layer
of dimension 100 and the same number of words as the word encoding. Next, include an
LSTM layer and specify the hidden size to be 100. Finally, add a fully connected layer with
the same size as the number of classes, a softmax layer, and a classification layer. The
number of classes is the number of words in the vocabulary plus an extra class for the
"end of text" class.

inputSize = 1;

embeddingDimension = 100;

numWords = numel(ds.Encoding.Vocabulary);
numClasses = numWords + 1;

layers = [
sequencelnputlLayer(inputSize)
wordEmbeddinglLayer(embeddingDimension, numWords)
lstmLayer(100)
dropoutLayer(0.2)
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];

Specify the training options. Specify the solver to be 'adam'. Train for 300 epochs with
lean rate 0.01. Set the mini-batch size to 32. To keep the data sorted by sequence length,
set the 'Shuffle' option to 'never'. To monitor the training progress, set the 'Plots'
option to 'training-progress'. To suppress verbose output, set 'Verbose' to false.

options = trainingOptions('adam',
'‘MaxEpochs"',300,
'InitialLearnRate', 0.01,
'MiniBatchSize', 32,
'Shuffle', 'never',
'Plots', 'training-progress"',
'Verbose', false);

Train the network using trainNetwork.
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net

trainNetwork(ds, layers,options);

8|

Accuracy (%)

Loss
o 4 N e A o @ o ®

Training Progress (05-Jul-2018 18:34:28)

200

1000 2000

4000
Iteration

5000

6000

Results
Valigation accuracy:
Training finished

Training Time
Starttime:
Elapsed ime:

Training Cycle
Epach

teration

Hterations per epoch
Maximum fterations
Validation
Frequency:
Patience

Other Information
Hardware resource:
Learning rate schedule
Learning rate;

Learn more

Accuracy

===

NiA
Reached final iteration

05-Jul-2018 18:34:28
46 min 43 sec

300 0f 300
6900 of 6900
2

6300

NIA
NIA

single GPU
Constant
0

Training (smoothed)

Training

100 200

1000 2000 3000 4000 5000 6000
lteration

— — ® — — Validation

Loss

Training (smoothed)

— = ® — = Validation

2-66

Generate New Text

Generate the first word of the text by sampling a word from a probability distribution
according to the first words of the text in the training data. Generate the remaining words
by using the trained LSTM network to predict the next time step using the current
sequence of generated text. Keep generating words one-by-one until the network predicts

the "end of text" word.

Sample the first word according to the distribution of the first words in the training data.

initialWords = docfun(@(words) words(1l),documents);
firstWord = string(datasample(initialWords,1));
generatedText = firstWord

generatedText =

nan
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To make the first prediction using the network, input the index that represents the first
generated word. Find the index by using the word2ind function with the word encoding
used by the document datastore.

enc = ds.Encoding;
wordIndex = word2ind(enc,firstWord)

wordIndex = 37

For the remaining predictions, sample the next word according to the prediction scores of
the network. The prediction scores represent the probability distribution of the next word.
Sample the words from the vocabulary given by the class names of the output layer of the
network.

vocabulary = string(net.Layers(end).Classes);

Make predictions word by word using predictAndUpdateState. For each prediction,
input the index of the previous word. Stop predicting when the network predicts the end
of text word or when the generated text is 500 characters long. For large collections of
data, long sequences, or large networks, predictions on the GPU are usually faster to
compute than predictions on the CPU. Otherwise, predictions on the CPU are usually
faster to compute. For single time step predictions, use the CPU. To use the CPU for
prediction, set the 'ExecutionEnvironment' option of predictAndUpdateState to
‘cpu'.
maxLength = 500;
while strlength(generatedText) < maxLength

% Predict the next word scores.

[net,wordScores] = predictAndUpdateState(net,wordIndex, 'ExecutionEnvironment', 'cpu

% Sample the next word.
newWord = datasample(vocabulary,1l, 'Weights',wordScores);

% Stop predicting at the end of text.
if newWord == "EndOfText"

break
end

% Add the word to the generated text.
generatedText = generatedText + " " + newWord;

% Find the word index for the next input.

wordIndex = word2ind(enc,newWord);
end
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The generation process introduces whitespace characters between each prediction, which
means that some punctuation characters appear with unnecessary spaces before and
after. Reconstruct the generated text by replacing removing the spaces before and after
the appropriate punctuation characters.

Remove the spaces that appear before the specified punctuation characters.

punctuationcharacters = [II.II "," nmrn II)II II:II II?II n !II];
generatedText = replace(generatedText," " + punctuationCharacters,punctuationCharacter:

Remove the spaces that appear after the specified punctuation characters.

punctuationCharacters = ["(" "‘"];
generatedText = replace(generatedText,punctuationCharacters + " ",punctuationCharacter:

To generate multiple pieces of text, reset the network state between generations using
resetState.

generatedText

generatedText =
"‘You did!’ said the Hatter."

net = resetState(net);

See Also

doc2sequence | extractHTMLText | findElement | htmlTree | LstmLayer |
sequencelnputLayer | tokenizedDocument | trainNetwork | trainingOptions |
wordEmbeddinglLayer | wordcloud

Related Examples

. “Generate Text Using Deep Learning” (Deep Learning Toolbox)

. “Create Simple Text Model for Classification” on page 2-2

. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-33

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Classify Out-of-Memory Text Data Using Custom Mini-
Batch Datastore

This example shows how to classify out-of-memory text data with a deep learning network
using a custom mini-batch datastore.

A mini-batch datastore is an implementation of a datastore with support for reading data
in batches. You can use a mini-batch datastore as a source of training, validation, test,
and prediction data sets for deep learning applications. Use mini-batch datastores to read
out-of-memory data or to perform specific preprocessing operations when reading
batches of data.

When training the network, the software creates mini-batches of sequences of the same
length by padding, truncating, or splitting the input data. The trainingOptions
function provides options to pad and truncate input sequences, however, these options
are not well suited for sequences of word vectors. Furthermore, this function does not
support padding data in a custom datastore. Instead, you must pad and truncate the
sequences manually. If you left-pad and truncate the sequences of word vectors, then the
training might improve.

The “Classify Text Data Using Deep Learning” on page 2-43 manually truncates and pads
all the documents to the same length. This process adds lots of padding to very short
documents and discards lots of data from very long documents.

Alternatively, to prevent adding too much padding or discarding too much data, create a
custom mini-batch datastore that inputs mini-batches into the network. The custom mini-
batch datastore textDatastore.m converts mini-batches of documents to sequences or
word indices and left-pads each mini-batch to the length of the longest document in the
mini-batch. For sorted data, this datastore can help reduce the amount of padding added
to the data since documents are not padded to a fixed length. Similarly, the datastore does
not discard any data from the documents.

This example uses the custom mini-batch datastore textDatastore.m. You can adapt
this datastore to your data by customizing the functions. For an example showing how to
create your own custom mini-batch datastore, see “Develop Custom Mini-Batch
Datastore” (Deep Learning Toolbox).

Load Pretrained Word Embedding

The datastore textDatastore requires a word embedding to convert documents to
sequences of vectors. Load a pretrained word embedding using
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fastTextWordEmbedding. This function requires Text Analytics Toolbox™ Model for
fastText English 16 Billion Token Word Embedding support package. If this support
package is not installed, then the function provides a download link.

emb = fastTextWordEmbedding;
Create Mini-Batch Datastore of Documents

Create a datastore that contains the data for training. The custom mini-batch datastore
textDatastore reads predictors and labels from a CSV file. For the predictors, the
datastore converts the documents into sequences of word indices and for the responses,
the datastore returns a categorical label for each document.

To create the datastore, first save the custom mini-batch datastore textDatastore.mto
the path. For more information about creating custom mini-batch datastores, see
“Develop Custom Mini-Batch Datastore” (Deep Learning Toolbox).

For the training data, specify the CSV file "weatherReportsTrain.csv" and that the
text and labels are in the columns "event narrative" and "event type"
respectively.

filenameTrain = "weatherReportsTrain.csv";
textName = "event narrative";
labelName = "event type";

dsTrain = textDatastore(filenameTrain, textName, labelName, emb)

dsTrain =
textDatastore with properties:

Datastore: [1x1 matlab.io.datastore.TabularTextDatastore]
TextName: "event narrative"
LabelName: "event type"
Classes: [1x39 string]
NumClasses: 39
Embedding: [1x1 wordEmbedding]
MiniBatchSize: 128
NumObservations: 19683

Create a datastore containing the validation data from the CSV file
"weatherReportsValidation.csv" using the same steps.

filenameValidation = "weatherReportsValidation.csv";
dsValidation = textDatastore(filenameValidation, textName, labelName, emb)


matlab:edit(fullfile(matlabroot,'examples','nnet','main','textDatastore.m'))
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dsValidation =
textDatastore with properties:

Datastore: [1x1 matlab.io.datastore.TabularTextDatastore]
TextName: "event narrative"
LabelName: "event type"
Classes: [1x39 string]
NumClasses: 39
Embedding: [1x1 wordEmbedding]
MiniBatchSize: 128
NumObservations: 4218

Create and Train LSTM Network

Define the LSTM network architecture. To input sequence data into the network, include
a sequence input layer and set the input size to the embedding dimension. Next, include
an LSTM layer and specify the hidden size to be 180. To use the LSTM layer for a
sequence-to-label classification problem, set the output mode to be 'last'. Finally, add a
fully connected layer with output size equal to the number of classes, a softmax layer, and
a classification layer.

inputSize = dsTrain.Embedding.Dimension;

hiddenSize = 180;
numClasses = dsTrain.NumClasses;
layers = [ ...

sequencelnputlLayer(inputSize)
lstmLayer(hiddenSize, 'OutputMode', 'last")
fullyConnectedLayer(numClasses)
softmaxLayer

classificationLayer];

Specify the training options. Specify the solver to be 'adam' and the gradient threshold
to be 1. Set the initial learn rate to be 0.01. The datastore textDatastore.m does not
support shuffling, so set 'Shuffle', to 'never' (for an example showing how to
implement a datastore with support for shuffling, see “Develop Custom Mini-Batch
Datastore” (Deep Learning Toolbox)). Specify the validation data using the
'ValidationData' option. To monitor the training progress, set the 'Plots' option to
"training-progress'. To suppress verbose output, set 'Verbose' to false.

By default, trainNetwork uses a GPU if one is available (requires Parallel Computing
Toolbox™ and a CUDA® enabled GPU with compute capability 3.0 or higher). Otherwise,
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it uses the CPU. To specify the execution environment manually, use the
'"ExecutionEnvironment' name-value pair argument of trainingOptions
on a CPU can take significantly longer than training on a GPU.

options = trainingOptions('adam',
'GradientThreshold',1,
'InitiallLearnRate',0.01,
'Shuffle', 'never',
'Plots', 'training-progress',
'Verbose', false,
'ValidationData',dsValidation);

Train the LSTM network using the trainNetwork function.

net trainNetwork(dsTrain, layers,options);
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Test LSTM Network

Create a datastore containing the documents and the labels

filenameTest = "weatherReportsTest.csv";
dsTest = textDatastore(filenameTest,textName, labelName,emb)

dsTest =
textDatastore with properties:

Datastore: [1x1 matlab.io.datastore.TabularTextDatastore]
TextName: "event narrative"
LabelName: "event type"
Classes: [1x39 string]
NumClasses: 39
Embedding: [1x1 wordEmbedding]
MiniBatchSize: 128
NumObservations: 4217

Classify the test documents using the trained LSTM network.

YPred = classify(net,dsTest);

Calculate the classification accuracy. The accuracy is the proportion of labels that the
network predicts correctly.

YTest = readlLabels(dsTest);
accuracy = sum(YPred == YTest)/numel(YPred)

accuracy = 0.8328

See Also

doc2sequence | extractHTMLText | findElement | htmlTree | LstmLayer |
sequencelnputlLayer | tokenizedDocument | trainNetwork | trainingOptions |
wordEmbeddinglLayer | wordcloud

Related Examples
. “Generate Text Using Deep Learning” (Deep Learning Toolbox)
. “Create Simple Text Model for Classification” on page 2-2
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. “Analyze Text Data Using Topic Models” on page 2-18

. “Analyze Text Data Using Multiword Phrases” on page 2-9

. “Train a Sentiment Classifier” on page 2-33

. “Sequence Classification Using Deep Learning” (Deep Learning Toolbox)
. “Deep Learning in MATLAB” (Deep Learning Toolbox)
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Choose Number of Topics for LDA Model

This example shows how to decide on a suitable number of topics for a latent Dirichlet
allocation (LDA) model.

To decide on a suitable number of topics, you can compare the goodness-of-fit of LDA
models fit with varying numbers of topics. You can evaluate the goodness-of-fit of an LDA
model by calculating the perplexity of a held-out set of documents. The perplexity
indicates how well the model describes a set of documents. A lower perplexity suggests a
better fit.

To reproduce the results of this example, set rng to 'default’.
rng('default')
Extract and Preprocess Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Extract the text data
from the field event narrative.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
textData = data.event narrative;

Tokenize and preprocess the text data using the function
preprocessWeatherNarratives which is listed at the end of this example.

documents

= preprocessWeatherNarratives(textData);
documents(1:5)

ans =
5x1 tokenizedDocument:

(1,1) 5 tokens: large tree down plantersville nettleton

(2,1) 18 tokens: two foot deep standing water develop street winthrop unive..
(3,1) 9 tokens: nws columbia relayed report tree blow down tom hall

(4,1) 10 tokens: medium report two tree blow down 140 old fort area

(5,1) 0 tokens:

Set aside 10% of the documents at random for validation.

numDocuments = numel(documents);
cvp = cvpartition(numDocuments, 'HoldOut',0.1);
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documentsTrain = documents(cvp.training);
documentsValidation = documents(cvp.test);

Create a bag-of-words model from the training documents. Remove the words that do not
appear more than two times in total. Remove any documents containing no words.

bag = bagOfWords(documentsTrain);
bag = removelInfrequentWords(bag,2);
bag = removeEmptyDocuments(bag);

Choose Number of Topics

The goal is to choose a number of topics that minimize the perplexity is lowest compared
to other numbers of topics. This is not the only consideration: models fit with larger
numbers of topics may take longer to converge. To see the effects of the tradeoff,
calculate both goodness-of-fit and the fitting time. If the optimal number of topics is high,
then you might want to choose a lower value to speed up the fitting process.

Fit some LDA models for a range of values for the number of topics. Compare the fitting
time and the perplexity of each model on the held-out set of test documents. The
perplexity is the second output to the Logp function. To obtain the second output without
assigning the first output to anything, use the ~ symbol. The fitting time is the
TimeSinceStart value for the last iteration. This value is in the History struct of the
FitInfo property of the LDA model.

For a quicker fit, specify 'Solver' to be 'savb'. To suppress verbose output, set
'Verbose' to 0. This may take a few minutes to run.

numTopicsRange = [5 10 15 20 40];
for i = l:numel(numTopicsRange)
numTopics = numTopicsRange(i);

mdl = fitlda(bag,numTopics,
'Solver', 'savb',
'Verbose',0);

[~,validationPerplexity(i)] = logp(mdl,documentsValidation);
timeElapsed(i) = mdl.FitInfo.History.TimeSinceStart(end);
end

Show the perplexity and elapsed time for each number of topics in a plot. Plot the
perplexity on the left axis and the time elapsed on the right axis.

figure
yyaxis left
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plot(numTopicsRange,validationPerplexity, '+-"')
ylabel("Validation Perplexity")

yyaxis right
plot(numTopicsRange, timeElapsed, 'o-")
ylabel("Time Elapsed (s)")

legend(["Validation Perplexity" "Time Elapsed (s)"], 'Location', 'southeast')
xLlabel("Number of Topics")
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The plot suggests that fitting a model with 10-20 topics may be a good choice. The
perplexity is low compared with the models with different numbers of topics. With this
solver, the elapsed time for this many topics is also reasonable. With different solvers, you
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may find that increasing the number of topics can lead to a better fit, but fitting the model
takes longer to converge.

Example Preprocessing Function
The function preprocessWeatherNarratives, performs the following steps in order:

Convert the text data to lowercase using Llower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

Lemmatize the words using normalizeWords.

N o A WN R

function [documents] = preprocessWeatherNarratives(textData)
% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

% Remove words with 2 or fewer characters, and words with 15 or greater
% characters.

documents = removeShortWords(documents,2);

documents = removelLongWords(documents,15);

% Lemmatize the words.

documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');
end

See Also

addPart0fSpeechDetails | bag0fWords | bag0fWords | erasePunctuation |
fitlda | ldaModel | logp | normalizeWords | removeEmptyDocuments |



See Also

removeInfrequentWords | removeLongWords | removeShortWords |
removeStopWords | tokenizedDocument

Related Examples
. “Analyze Text Data Using Topic Models” on page 2-18
. “Compare LDA Solvers” on page 2-80
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This example shows how to compare latent Dirichlet allocation (LDA) solvers by
comparing the goodness of fit and the time taken to fit the model.

To reproduce the results of this example, set rng to 'default’.
rng('default")

Extract and Preprocess Text Data

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event. Extract the text data
from the field event narrative.

filename = "weatherReports.csv";
data = readtable(filename, 'TextType', 'string');
textData = data.event narrative;

Tokenize and preprocess the text data using the function
preprocessWeatherNarratives which is listed at the end of this example.

documents = preprocessWeatherNarratives(textData);
Set aside 10% of the documents at random for validation.
numbDocuments = numel(documents);

cvp = cvpartition(numDocuments, 'HoldOut',0.1);

documentsTrain = documents(cvp.training);
documentsValidation = documents(cvp.test);

Create a bag-of-words model from the training documents. Remove the words that do not
appear more than two times in total. Remove any documents containing no words.

bag = bag0fWords(documentsTrain);
bag = removelnfrequentWords(bag,2);
bag = removeEmptyDocuments(bag);

Fit and Compare Models

For each of the LDA solvers, fit an LDA model with 60 topics. To distinguish the solvers
when plotting the results on the same axes, specify different line properties for each
solver.
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numTopics = 60;
solvers = ["cgs" "avb" "cvb0" "savb"];
'Linespecs = [II+_II II*_II IIX_II IIO_II];

For the validation data, create a bag-of-words model from the validation documents.

validationData = bagOfWords(documentsValidation);

For each of the LDA solvers, fit the model, set the initial topic concentration to 1, and
specify not to fit the topic concentration parameter. Using the data in the FitInfo
property of the fitted LDA models, plot the validation perplexity and the time elapsed. Plot
the time elapsed in a logarithmic scale. This can take up to an hour to run.

The code for removing NaNs is necessary because of a quirk of the stochastic solver
"savb'. For this solver, the function evaluates the validation perplexity after each pass of
the data. The function does not evaluate the validation perplexity for each iteration (mini-
batch) and reports NaNs in the FitInfo property. To plot the validation perplexity,
remove the NaNs from the reported values.

figure

for i = 1l:numel(solvers)
solver = solvers(i);
lineSpec = lineSpecs(i);

mdl = fitlda(bag,numTopics,
'Solver',solver,
'InitialTopicConcentration',1,
'FitTopicConcentration', false,
'ValidationData',validationData,
'Verbose',0);

history = mdl.FitInfo.History;

timeElapsed = history.TimeSinceStart;
validationPerplexity = history.ValidationPerplexity;

% Remove NalNs.

idx = isnan(validationPerplexity);
timeElapsed(idx) = [];
validationPerplexity(idx) = [];

semilogx(timeElapsed,validationPerplexity, lineSpec)

hold on
end
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hold off

xlabel("Time Elapsed (s)")
ylabel("Validation Perplexity")
legend(solvers)
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For the stochastic solver "savb", the function, by default, passes through the training
data once. To process more passes of the data, set 'DataPassLimit’' to a larger value
(the default value is 1). For the batch solvers ("cgs", "avb", and "cvb0"), to reduce the
number of iterations used to fit the models, set the 'IterationLimit' option to a lower
value (the default value is 100).
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A lower validation perplexity suggests a better fit. Usually, the solvers "savb" and "cgs"
converge quickly to a good fit. The solver "cvb0" might converge to a better fit, but it
can take much longer to converge.

For the FitInfo property, the fitlda function estimates the validation perplexity from
the document probabilities at the maximum likelihood estimates of the per-document
topic probabilities. This is usually quicker to compute, but can be less accurate than other
methods. Alternatively, calculate the validation perplexity using the lLogp function. This
function calculates more accurate values but can take longer to run. For an example
showing how to compute the perplexity using Logp, see “Calculate Document Log-
Probabilities from Word Count Matrix”.

Example Preprocessing Function
The function preprocessWeatherNarratives performs the following steps in order:

Convert the text data to lowercase using lower.

Tokenize the text using tokenizedDocument.

Erase punctuation using erasePunctuation.

Remove a list of stop words (such as "and", "of", and "the") using removeStopWords.
Remove words with 2 or fewer characters using removeShortWords.

Remove words with 15 or more characters using removelLongWords.

N o o1 A W N

Lemmatize the words using normalizeWords.

function [documents] = preprocessWeatherNarratives(textData)

% Convert the text data to lowercase.
cleanTextData = lower(textData);

% Tokenize the text.
documents = tokenizedDocument(cleanTextData);

% Erase punctuation.
documents = erasePunctuation(documents);

% Remove a list of stop words.
documents = removeStopWords(documents);

Remove words with 2 or fewer characters, and words with 15 or greater
characters.
documents = removeShortWords(documents,2);

)
©
)

©
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documents = removelLongWords(documents,15);

% Lemmatize the words.
documents = addPartOfSpeechDetails(documents);
documents = normalizeWords(documents, 'Style', 'lemma');

end

See Also

addPart0fSpeechDetails | bag0fWords | erasePunctuation | fitlda | ldaModel
| Logp | normalizeWords | removeEmptyDocuments | removeInfrequentWords |
removeLongWords | removeShortWords | removeStopWords | tokenizedDocument |
wordcloud

Related Examples
. “Analyze Text Data Using Topic Models” on page 2-18
. “Choose Number of Topics for LDA Model” on page 2-75
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* “Visualize Text Data Using Word Clouds” on page 3-2
* “Visualize Word Embeddings Using Text Scatter Plots” on page 3-8
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Visualize Text Data Using Word Clouds

3-2

This example shows how to visualize text data using word clouds.

Text Analytics Toolbox extends the functionality of the wordcloud (MATLAB) function. It
adds support for creating word clouds directly from string arrays, and creating word
clouds from bag-of-words models and LDA topics.

Load the example data. The file weatherReports. csv contains weather reports,
including a text description and categorical labels for each event.

filename = "weatherReports.csv";
T = readtable(filename, 'TextType', 'string');

Extract the text data from the event _narrative column.

textData = T.event narrative;
textData(1:10)

ans = 10x1 string array
"Large tree down between Plantersville and Nettleton."
"One to two feet of deep standing water developed on a street on the Winthrop Unive
"NWS Columbia relayed a report of trees blown down along Tom Hall St."
"Media reported two trees blown down along I-40 in the 0ld Fort area."
"A few tree limbs greater than 6 inches down on HWY 18 in Roseland."
"Awning blown off a building on Lamar Avenue. Multiple trees down near the interse
"Quarter size hail near Rosemark."
"Tin roof ripped off house on 0ld Memphis Road near Billings Drive. Several large -
"Powerlines down at Walnut Grove and Cherry Lane roads."

Create a word cloud from all the weather reports.

figure
wordcloud(textData);
title("Weather Reports")
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Weather Reports
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Compare the words in the reports with labels "Hail" and "Thunderstorm Wind".
Create word clouds of the reports for each of these labels. Specify the word colors to be
blue and magenta for each word cloud respectively.

figure
labels = T.event type;

subplot(1,2,1)

idx = labels == "Hail";
wordcloud(textData(idx), 'Color', 'blue');
title("Hail")

subplot(1,2,2)
idx = labels == "Thunderstorm Wind";
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wordcloud(textData(idx), 'Color',

title("Thunderstorm Wind")
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Compare the words in the reports from the states Florida, Kansas, and Alaska. Create
word clouds of the reports for each of these states in rectangles and draw a border

around each word cloud.

figure
state = T.state;

subplot(1,3,1)
idx = state == "FLORIDA";

wordcloud(textData(idx), 'Shape',"

title("Florida")

3-4

rectangle', 'Box','on');
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subplot(1,3,2)
idx = state == "KANSAS";

wordcloud(textData(idx), 'Shape', 'rectangle', 'Box"','on");

title("Kansas")

subplot(1,3,3)
idx = state == "ALASKA";

wordcloud(textData(idx), 'Shape', 'rectangle', 'Box"','on");

title("Alaska")
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Compare the words in the reports with property damage reported in thousands of dollars

to the reports with damage reported in millions of dollars. Create word clouds of the
reports for each of these amounts with highlight color blue and red respectively.
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cost = T.damage property;

idx = endsWith(cost, "K");

figure

wordcloud(textData(idx), 'HighlightColor', 'blue');
title("Damage Reported in Thousands")
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idx = endsWith(cost,"M");

figure

wordcloud(textData(idx), 'HighlightColor', 'red');
title("Damage Reported in Millions")
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Damage Reported in Millions
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See Also

bagO0fWords | tokenizedDocument | wordcloud

Related Examples

. “Prepare Text Data for Analysis” on page 1-11

. “Analyze Text Data Using Topic Models” on page 2-18

. “Classify Text Data Using Deep Learning” on page 2-43

. “Visualize Word Embeddings Using Text Scatter Plots” on page 3-8
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Visualize Word Embeddings Using Text Scatter Plots

3-8

This example shows how to visualize word embeddings using 2-D and 3-D t-SNE and text
scatter plots.

Word embeddings, map words in a vocabulary to real vectors. The vectors attempt to
capture the semantics of the words, so that similar words have similar vectors. Some
embeddings also capture relationships between words like "Italy is to France as Rome is

to Paris". In vector form, this relationship is /#aly — Rome + Paris = France
To reproduce the results in this example, set rng to 'default’.
rng('default')

Load Pretrained Word Embedding

Load a pretrained word embedding using fastTextWordEmbedding. This function
requires Text Analytics Toolbox™ Model for fastText English 16 Billion Token Word
Embedding support package. If this support package is not installed, then the function
provides a download link.

emb

fastTextWordEmbedding

emb =
wordEmbedding with properties:

Dimension: 300
Vocabulary: [1x1000000 string]

Explore the word embedding using word2vec and vec2word. Convert the words Italy,
Rome, and Paris to vectors using word2vec.

italy = word2vec(emb,"Italy");
rome = word2vec(emb, "Rome");
paris = word2vec(emb, "Paris");

Compute the vector given by italy - rome + paris. This vector encapsulates the
semantic meaning of the word Italy, without the semantics of the word Rome, and also
includes the semantics of the word Paris.

vec = italy - rome + paris
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vec = 1x300 single row vector

0.1606 -0.0690 0.1183 -0.0349 0.0672 0.0907 -0.1820 -0.0080 0.

Find the closest words in the embedding to vec using vec2word.
word = vec2word(emb,vec)

word =
"France"

Create 2-D Text Scatter Plot

Visualize the word embedding by creating a 2-D text scatter plot using tsne and
textscatter.

Convert the first 500 words to vectors using word2vec. V is a matrix of word vectors of
length 300.

words = emb.Vocabulary(1:5000);
V = word2vec(emb,words) ;
size(V)

ans = 1x2

5000 300

Embed the word vectors in two-dimensional space using tsne. This function may take a
few minutes to run. If you want to display the convergence information, then set the
'Verbose' name-value pair to 1.

XY = tsne(V);

Plot the words at the coordinates specified by XY in a 2-D text scatter plot. For readability,
textscatter, by default, does not display all of the input words and displays markers
instead.

figure

textscatter(XY,words)
title("Word Embedding t-SNE Plot")
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Word Embedding t-SNE Plot
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Zoom in on a section of the plot.

xlim([-18 -5]
ylim([11 21])
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Word Embedding t-SNE Plot
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Create 3-D Text Scatter Plot

Visualize the word embedding by creating a 3-D text scatter plot using tsne and

textscatter.

Convert the first 5000 words to vectors using word2vec. V is a matrix of word vectors of

length 300.

words = emb.Vocabulary(1:5000);
V = word2vec(emb,words) ;
size(V)

ans = 1Ix2
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5000 300

Embed the word vectors in a three-dimensional space using tsne by specifying the
number of dimensions to be three. This function may take a few minutes to run. If you
want to display the convergence information, then you can set the 'Verbose' name-
value pair to 1.

XYZ = tsne(V, 'NumDimensions',3);
Plot the words at the coordinates specified by XYZ in a 3-D text scatter plot.
figure

ts = textscatter3(XYZ,words);
title("3-D Word Embedding t-SNE Plot")
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3-D Word Embedding t-SNE Plot
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Zoom in on a section of the plot.

x1im([12.04 19.48])
ylim([-2.66 3.40])
z1lim([10.03 14.53])
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3-D Word Embedding t-SNE Plot
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Perform Cluster Analysis

Convert the first 5000 words to vectors using word2vec. V is a matrix of word vectors of
length 300.

words = emb.Vocabulary(1:5000);
V = word2vec(emb,words) ;
size(V)

ans = 1x2

5000 300

Discover 25 clusters using kmeans.
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cidx = kmeans(V,25, 'dist', 'sgeuclidean');

Visualize the clusters in a text scatter plot using the 2-D t-SNE data coordinates
calculated earlier.

figure

textscatter(XY,words, 'ColorData', categorical(cidx));
title("Word Embedding t-SNE Plot")

Word Embedding t-SNE Plot
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Zoom in on a section of the plot.

xUim([13 24])
ylim([-47 -35])
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Word Embedding t-SNE Plot

T T SO YTITL T T
thought
a6 .

raging
42T

hing

-44 r

See Also

readWordEmbedding | textscatter | textscatter3 | tokenizedDocument |

vec2word | word2vec | wordEmbedding

Related Examples

. “Extract Text Data from Files” on page 1-2

. “Prepare Text Data for Analysis” on page 1-11

. “Visualize Text Data Using Word Clouds” on page 3-2

. “Classify Text Data Using Deep Learning” on page 2-43
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